Serena Marchesi, Davide De Tommaso, Kyveli Kompatsiari, Yan Wu, Agnieszka Wykowska
{"title":"Tools and methods to study and replicate experiments addressing human social cognition in interactive scenarios.","authors":"Serena Marchesi, Davide De Tommaso, Kyveli Kompatsiari, Yan Wu, Agnieszka Wykowska","doi":"10.3758/s13428-024-02434-z","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade, scientists investigating human social cognition have started bringing traditional laboratory paradigms more \"into the wild\" to examine how socio-cognitive mechanisms of the human brain work in real-life settings. As this implies transferring 2D observational paradigms to 3D interactive environments, there is a risk of compromising experimental control. In this context, we propose a methodological approach which uses humanoid robots as proxies of social interaction partners and embeds them in experimental protocols that adapt classical paradigms of cognitive psychology to interactive scenarios. This allows for a relatively high degree of \"naturalness\" of interaction and excellent experimental control at the same time. Here, we present two case studies where our methods and tools were applied and replicated across two different laboratories, namely the Italian Institute of Technology in Genova (Italy) and the Agency for Science, Technology and Research in Singapore. In the first case study, we present a replication of an interactive version of a gaze-cueing paradigm reported in Kompatsiari et al. (J Exp Psychol Gen 151(1):121-136, 2022). The second case study presents a replication of a \"shared experience\" paradigm reported in Marchesi et al. (Technol Mind Behav 3(3):11, 2022). As both studies replicate results across labs and different cultures, we argue that our methods allow for reliable and replicable setups, even though the protocols are complex and involve social interaction. We conclude that our approach can be of benefit to the research field of social cognition and grant higher replicability, for example, in cross-cultural comparisons of social cognition mechanisms.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02434-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, scientists investigating human social cognition have started bringing traditional laboratory paradigms more "into the wild" to examine how socio-cognitive mechanisms of the human brain work in real-life settings. As this implies transferring 2D observational paradigms to 3D interactive environments, there is a risk of compromising experimental control. In this context, we propose a methodological approach which uses humanoid robots as proxies of social interaction partners and embeds them in experimental protocols that adapt classical paradigms of cognitive psychology to interactive scenarios. This allows for a relatively high degree of "naturalness" of interaction and excellent experimental control at the same time. Here, we present two case studies where our methods and tools were applied and replicated across two different laboratories, namely the Italian Institute of Technology in Genova (Italy) and the Agency for Science, Technology and Research in Singapore. In the first case study, we present a replication of an interactive version of a gaze-cueing paradigm reported in Kompatsiari et al. (J Exp Psychol Gen 151(1):121-136, 2022). The second case study presents a replication of a "shared experience" paradigm reported in Marchesi et al. (Technol Mind Behav 3(3):11, 2022). As both studies replicate results across labs and different cultures, we argue that our methods allow for reliable and replicable setups, even though the protocols are complex and involve social interaction. We conclude that our approach can be of benefit to the research field of social cognition and grant higher replicability, for example, in cross-cultural comparisons of social cognition mechanisms.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.