{"title":"Puerarin alleviates acrolein-induced atherosclerosis by activating the MYH9-mediated SIRT1/Nrf2 cascade to inhibit the activation of inflammasome","authors":"XiaoNing Li, YeTing Li, HuiHui Jiao, AiTing Wang, Man Zheng, ChunYan Xiang, FengLei Zhang","doi":"10.1002/bab.2603","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Puerarin (Pue) has significant antioxidant and anti-inflammatory properties. This work was designed to clarify and investigate the potential mechanisms of Pue in atherosclerosis (AS) progression.</p>\n </section>\n \n <section>\n \n <p>In vivo, acrolein (Acr) was inhaled through drinking water to construct AS model. In vitro, CCK-8 assay and lactate dehydrogenase (LDH) assay kit were used to detect cell viability. Apoptosis was detected by flow cytometry. The content of malondialdehyde (MDA) was determined by commercial kit, the level of inflammatory factors was detected by ELISA, and proteins were determined by western blot. Pue administration could effectively reduce blood lipid level in Acr-fed mice. Pue suppressed oxidative stress, the formation of atherosclerotic plaques, and the process of aortic histological changes. Pue pretreatment decreased MDA in HUVECs and maintained the activity of antioxidant enzymes. Pue upregulated SIRT1/Nrf2 cascade in HUVECs. Pue increased MYH9 and inhibited NLRP3 inflammasome-related proteins, and the inhibition of MYH9 significantly impaired Pue-induced Nrf2 activation. Moreover, HUVEC cytotoxicity and apoptosis are alleviated by Pue, in addition to NLRP3-mediated pyroptosis in HUVECs induced by Acr. MYH9 inhibitors effectively suppressed the pyroptosis induced by Acr and prevented injury to HUVECs. In addition, Pue promoted SIRT1/Nrf2 cascade activation in HUVECs. Pue may alleviate Acr-induced AS by activating the MYH9-mediated SIRT1/Nrf2 cascade to inhibit inflammasome activation.</p>\n </section>\n </div>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":"71 5","pages":"1129-1138"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bab.2603","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Puerarin (Pue) has significant antioxidant and anti-inflammatory properties. This work was designed to clarify and investigate the potential mechanisms of Pue in atherosclerosis (AS) progression.
In vivo, acrolein (Acr) was inhaled through drinking water to construct AS model. In vitro, CCK-8 assay and lactate dehydrogenase (LDH) assay kit were used to detect cell viability. Apoptosis was detected by flow cytometry. The content of malondialdehyde (MDA) was determined by commercial kit, the level of inflammatory factors was detected by ELISA, and proteins were determined by western blot. Pue administration could effectively reduce blood lipid level in Acr-fed mice. Pue suppressed oxidative stress, the formation of atherosclerotic plaques, and the process of aortic histological changes. Pue pretreatment decreased MDA in HUVECs and maintained the activity of antioxidant enzymes. Pue upregulated SIRT1/Nrf2 cascade in HUVECs. Pue increased MYH9 and inhibited NLRP3 inflammasome-related proteins, and the inhibition of MYH9 significantly impaired Pue-induced Nrf2 activation. Moreover, HUVEC cytotoxicity and apoptosis are alleviated by Pue, in addition to NLRP3-mediated pyroptosis in HUVECs induced by Acr. MYH9 inhibitors effectively suppressed the pyroptosis induced by Acr and prevented injury to HUVECs. In addition, Pue promoted SIRT1/Nrf2 cascade activation in HUVECs. Pue may alleviate Acr-induced AS by activating the MYH9-mediated SIRT1/Nrf2 cascade to inhibit inflammasome activation.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.