Fan Feng, Zunyuan Hu, Jianxiao Wang, Pengchao Wang, Cheng Sun, Xiaoning Wang, Fuzhen Bi, Yonghai Li, Xichang Bao
{"title":"Non-Fused π-Extension of Endcaps of Small Molecular Acceptors Enabling High-Performance Organic Solar Cells.","authors":"Fan Feng, Zunyuan Hu, Jianxiao Wang, Pengchao Wang, Cheng Sun, Xiaoning Wang, Fuzhen Bi, Yonghai Li, Xichang Bao","doi":"10.1002/cssc.202400601","DOIUrl":null,"url":null,"abstract":"<p><p>The modular structure of small molecular acceptors (SMAs) allows for versatile modifications of the materials and boosts the photovoltaic efficiencies of organic solar cells (OSCs) in recent years. As a critical component, the endcaps of SMAs have been intensively investigated and modified to control the molecular aggregation and photo-electronic conversion. However, most of the studies focus on halogenation or π-fusion extension of the endcap moieties, but overlook the non-fused π-extension approach, which could be a promising strategy to balance the self-aggregation and compatibility behaviors. Herein, we reported two new acceptors namely BTP-Th and BTP-FTh based on non-fused π-extension of the endcap by chlorinated-thiophene, of which the latter molecule has better co-planarity and crystallinity because of the intramolecular noncovalent interactions. Paired with donor PBDB-T, the optimal device of BTP-FTh reveals a greater efficiency of 14.81 % that that of BTP-Th (13.91 %). Nevertheless, the BTP-Th based device realizes a lower energy loss, enabling BTP-Th as a good candidate to serve as guest acceptor. As a result, the ternary solar cells of PM6 : BTP-eC9 : BTP-Th output a champion efficiency up to 18.71 % with enhanced open-circuit voltage. This study highlights the significance of rational decoration of endcaps for the design of high-performance SMAs and photovoltaic cells.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400601","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The modular structure of small molecular acceptors (SMAs) allows for versatile modifications of the materials and boosts the photovoltaic efficiencies of organic solar cells (OSCs) in recent years. As a critical component, the endcaps of SMAs have been intensively investigated and modified to control the molecular aggregation and photo-electronic conversion. However, most of the studies focus on halogenation or π-fusion extension of the endcap moieties, but overlook the non-fused π-extension approach, which could be a promising strategy to balance the self-aggregation and compatibility behaviors. Herein, we reported two new acceptors namely BTP-Th and BTP-FTh based on non-fused π-extension of the endcap by chlorinated-thiophene, of which the latter molecule has better co-planarity and crystallinity because of the intramolecular noncovalent interactions. Paired with donor PBDB-T, the optimal device of BTP-FTh reveals a greater efficiency of 14.81 % that that of BTP-Th (13.91 %). Nevertheless, the BTP-Th based device realizes a lower energy loss, enabling BTP-Th as a good candidate to serve as guest acceptor. As a result, the ternary solar cells of PM6 : BTP-eC9 : BTP-Th output a champion efficiency up to 18.71 % with enhanced open-circuit voltage. This study highlights the significance of rational decoration of endcaps for the design of high-performance SMAs and photovoltaic cells.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology