Julia Razlivina, Andrei Dmitrenko* and Vladimir Vinogradov*,
{"title":"AI-Powered Knowledge Base Enables Transparent Prediction of Nanozyme Multiple Catalytic Activity","authors":"Julia Razlivina, Andrei Dmitrenko* and Vladimir Vinogradov*, ","doi":"10.1021/acs.jpclett.4c00959","DOIUrl":null,"url":null,"abstract":"<p >Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving <i>R</i><sup>2</sup> = 0.75 for the Michaelis–Menten constant and <i>R</i><sup>2</sup> = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 22","pages":"5804–5813"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00959","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving R2 = 0.75 for the Michaelis–Menten constant and R2 = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.