Vasundhara Kain, Gabriel Araujo Grilo, Gunjan Upadhyay, Jerry L Nadler, Charles N Serhan, Ganesh V Halade
{"title":"Macrophage-specific lipoxygenase deletion amplify cardiac repair activating Treg cells in chronic heart failure.","authors":"Vasundhara Kain, Gabriel Araujo Grilo, Gunjan Upadhyay, Jerry L Nadler, Charles N Serhan, Ganesh V Halade","doi":"10.1093/jleuko/qiae113","DOIUrl":null,"url":null,"abstract":"<p><p>Splenic leukocytes, particularly macrophage-expressed lipoxygenases, facilitate the biosynthesis of resolution mediators essential for cardiac repair. Next, we asked whether deletion of 12/15 lipoxygenase (12/15LOX) in macrophages impedes the resolution of inflammation following myocardial infarction (MI). Using 12/15flox/flox and LysMcre scheme, we generated macrophage-specific 12/15LOX (Mɸ-12/15LOX-/-) mice. Young C57BL/6J wild-type and Mɸ-12/15LOX-/- male mice were subjected to permanent coronary ligation microsurgery. Mice were monitored at day 1 (d1) to d5 (as acute heart failure [AHF]) and to d56 (chronic HF) post-MI, maintaining no MI as d0 naïve control animals. Post ligation, Mɸ-12/15LOX-/- mice showed increased survival (88% vs 56%) and limited heart dysfunction compared with wild-type. In AHF, Mɸ-12/15LOX-/- mice have increased biosynthesis of epoxyeicosatrienoic acid by 30%, with the decrease in D-series resolvins, protectin, and maresin by 70% in the infarcted heart. Overall, myeloid cell profiling from the heart and spleen indicated that Mɸ-12/15LOX-/- mice showed higher immune cells with reparative Ly6Clow macrophages during AHF. In addition, the detailed immune profiling revealed reparative macrophage phenotype (Ly6Clow) in Mɸ-12/15LOX-/- mice in a splenocardiac manner post-MI. Mɸ-12/15LOX-/- mice showed an increase in myeloid population that coordinated increase of T regulatory cells (CD4+/Foxp3+) in the spleen and injured heart at chronic HF compared with wild-type. Thus, macrophage-specific deletion of 12/15LOX directs reparative macrophage phenotype to facilitate cardiac repair. The presented study outlines the complex role of 12/15LOX in macrophage plasticity and T regulatory cell signaling that indicates that resolution mediators are viable targets to facilitate cardiac repair in HF post-MI.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":"864-875"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Splenic leukocytes, particularly macrophage-expressed lipoxygenases, facilitate the biosynthesis of resolution mediators essential for cardiac repair. Next, we asked whether deletion of 12/15 lipoxygenase (12/15LOX) in macrophages impedes the resolution of inflammation following myocardial infarction (MI). Using 12/15flox/flox and LysMcre scheme, we generated macrophage-specific 12/15LOX (Mɸ-12/15LOX-/-) mice. Young C57BL/6J wild-type and Mɸ-12/15LOX-/- male mice were subjected to permanent coronary ligation microsurgery. Mice were monitored at day 1 (d1) to d5 (as acute heart failure [AHF]) and to d56 (chronic HF) post-MI, maintaining no MI as d0 naïve control animals. Post ligation, Mɸ-12/15LOX-/- mice showed increased survival (88% vs 56%) and limited heart dysfunction compared with wild-type. In AHF, Mɸ-12/15LOX-/- mice have increased biosynthesis of epoxyeicosatrienoic acid by 30%, with the decrease in D-series resolvins, protectin, and maresin by 70% in the infarcted heart. Overall, myeloid cell profiling from the heart and spleen indicated that Mɸ-12/15LOX-/- mice showed higher immune cells with reparative Ly6Clow macrophages during AHF. In addition, the detailed immune profiling revealed reparative macrophage phenotype (Ly6Clow) in Mɸ-12/15LOX-/- mice in a splenocardiac manner post-MI. Mɸ-12/15LOX-/- mice showed an increase in myeloid population that coordinated increase of T regulatory cells (CD4+/Foxp3+) in the spleen and injured heart at chronic HF compared with wild-type. Thus, macrophage-specific deletion of 12/15LOX directs reparative macrophage phenotype to facilitate cardiac repair. The presented study outlines the complex role of 12/15LOX in macrophage plasticity and T regulatory cell signaling that indicates that resolution mediators are viable targets to facilitate cardiac repair in HF post-MI.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.