Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2024-05-22 DOI:10.1016/j.cell.2024.04.031
Amy R. Eggers, Kai Chen, Katarzyna M. Soczek, Owen T. Tuck, Erin E. Doherty, Bryant Xu, Marena I. Trinidad, Brittney W. Thornton, Peter H. Yoon, Jennifer A. Doudna
{"title":"Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9","authors":"Amy R. Eggers, Kai Chen, Katarzyna M. Soczek, Owen T. Tuck, Erin E. Doherty, Bryant Xu, Marena I. Trinidad, Brittney W. Thornton, Peter H. Yoon, Jennifer A. Doudna","doi":"10.1016/j.cell.2024.04.031","DOIUrl":null,"url":null,"abstract":"<p>Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated <em>Geobacillus stearothermophilus</em> Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce &gt;100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":null,"pages":null},"PeriodicalIF":45.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.04.031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.

Abstract Image

快速解旋 DNA 加快了工程化 CRISPR-Cas9 的基因组编辑速度
可恒温的簇状规则间距短回文重复序列(CRISPR)和CRISPR相关(Cas9)酶可以延长蛋白质的寿命,从而提高基因组编辑的效率和传输能力。然而,初步实验表明,在培养的人类细胞中使用 Geobacillus stearothermophilus Cas9(GeoCas9)时几乎没有活性。GeoCas9的实验室进化变体通过获得楔形结构域(WED)的突变克服了这一自然限制,从而产生了高出100倍的基因组编辑水平。野生型和改进型 GeoCas9(iGeoCas9)酶的冷冻电子显微镜(cryo-EM)结构显示,iGeoCas9 的 WED 结构域与 DNA 底物之间有扩展接触。生化分析表明,iGeoCas9 能在哺乳动物细胞(而非细菌细胞)典型的镁限制条件下加速 DNA 解旋以捕获底物。这些发现使得对其他 Cas9 同源物进行合理工程改造成为可能,从而提高了基因组编辑水平,为编辑酶的改良提供了一种通用策略。这些结果共同揭示了Cas9 WED结构域在DNA解旋中的新作用,并证明了加速目标解旋是如何显著提高Cas9诱导的基因组编辑活性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信