Clamping enables enhanced electromechanical responses in antiferroelectric thin films

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hao Pan, Menglin Zhu, Ella Banyas, Louis Alaerts, Megha Acharya, Hongrui Zhang, Jiyeob Kim, Xianzhe Chen, Xiaoxi Huang, Michael Xu, Isaac Harris, Zishen Tian, Francesco Ricci, Brendan Hanrahan, Jonathan E. Spanier, Geoffroy Hautier, James M. LeBeau, Jeffrey B. Neaton, Lane W. Martin
{"title":"Clamping enables enhanced electromechanical responses in antiferroelectric thin films","authors":"Hao Pan, Menglin Zhu, Ella Banyas, Louis Alaerts, Megha Acharya, Hongrui Zhang, Jiyeob Kim, Xianzhe Chen, Xiaoxi Huang, Michael Xu, Isaac Harris, Zishen Tian, Francesco Ricci, Brendan Hanrahan, Jonathan E. Spanier, Geoffroy Hautier, James M. LeBeau, Jeffrey B. Neaton, Lane W. Martin","doi":"10.1038/s41563-024-01907-y","DOIUrl":null,"url":null,"abstract":"Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems. Here, the authors observe that in thin films of antiferroelectric PbZrO3, substrate clamping enhances the electromechanical response, with expansion purely in the out-of-plane direction, achieving 1.7% strain for 100-nm-thick films.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 7","pages":"944-950"},"PeriodicalIF":37.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01907-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thin-film materials with large electromechanical responses are fundamental enablers of next-generation micro-/nano-electromechanical applications. Conventional electromechanical materials (for example, ferroelectrics and relaxors), however, exhibit severely degraded responses when scaled down to submicrometre-thick films due to substrate constraints (clamping). This limitation is overcome, and substantial electromechanical responses in antiferroelectric thin films are achieved through an unconventional coupling of the field-induced antiferroelectric-to-ferroelectric phase transition and the substrate constraints. A detilting of the oxygen octahedra and lattice-volume expansion in all dimensions are observed commensurate with the phase transition using operando electron microscopy, such that the in-plane clamping further enhances the out-of-plane expansion, as rationalized using first-principles calculations. In turn, a non-traditional thickness scaling is realized wherein an electromechanical strain (1.7%) is produced from a model antiferroelectric PbZrO3 film that is just 100 nm thick. The high performance and understanding of the mechanism provide a promising pathway to develop high-performance micro-/nano-electromechanical systems. Here, the authors observe that in thin films of antiferroelectric PbZrO3, substrate clamping enhances the electromechanical response, with expansion purely in the out-of-plane direction, achieving 1.7% strain for 100-nm-thick films.

Abstract Image

Abstract Image

钳位可增强反铁电薄膜的机电响应
具有较大机电响应的薄膜材料是下一代微米/纳米机电应用的基础材料。然而,传统的机电材料(如铁电材料和弛豫器)在缩减到亚微米厚的薄膜时,由于基底的限制(箝位),会表现出严重的响应衰减。反铁电薄膜克服了这一限制,通过场诱导的反铁电到铁电相变与基底约束的非常规耦合,实现了巨大的机电响应。利用操作电子显微镜观察到氧八面体的脱硅和晶格体积在所有维度上的膨胀与相变相一致,因此面内夹持进一步增强了面外膨胀,第一原理计算也证明了这一点。反过来,还实现了非传统的厚度缩放,即从厚度仅为 100 纳米的模型反铁电 PbZrO3 薄膜中产生机电应变(1.7%)。高性能和对机理的理解为开发高性能微米/纳米机电系统提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信