{"title":"Non-vanishing of multiple zeta values for higher genus curves over finite fields","authors":"Daichi Matsuzuki","doi":"10.1016/j.jnt.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we show that ∞-adic multiple zeta values associated to the function field of an algebraic curve of higher genus over a finite field are not zero, under certain assumption on the gap sequence associated to the rational point ∞ on the given curve. Using arguments and results of Sheats and Thakur for the case of the projective line, we calculate the absolute values of power sums in the series defining multiple zeta values, and show that the calculation implies the non-vanishing result.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X2400115X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we show that ∞-adic multiple zeta values associated to the function field of an algebraic curve of higher genus over a finite field are not zero, under certain assumption on the gap sequence associated to the rational point ∞ on the given curve. Using arguments and results of Sheats and Thakur for the case of the projective line, we calculate the absolute values of power sums in the series defining multiple zeta values, and show that the calculation implies the non-vanishing result.