Encapsulation strategies for mechanical impact and damp heat reliability improvement of lightweight photovoltaic modules towards vehicle-integrated applications

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Bin Luo , Jonathan Govaerts , Fabiana Lisco , Gabriele Eder , Bram Breukers , Bart Ruttens , Jan D'Haen , Rik Van Dyck , Hariharsudan Sivaramakrishnan Radhakrishnan , Aart Willem Van Vuure , Jef Poortmans
{"title":"Encapsulation strategies for mechanical impact and damp heat reliability improvement of lightweight photovoltaic modules towards vehicle-integrated applications","authors":"Bin Luo ,&nbsp;Jonathan Govaerts ,&nbsp;Fabiana Lisco ,&nbsp;Gabriele Eder ,&nbsp;Bram Breukers ,&nbsp;Bart Ruttens ,&nbsp;Jan D'Haen ,&nbsp;Rik Van Dyck ,&nbsp;Hariharsudan Sivaramakrishnan Radhakrishnan ,&nbsp;Aart Willem Van Vuure ,&nbsp;Jef Poortmans","doi":"10.1016/j.solmat.2024.112932","DOIUrl":null,"url":null,"abstract":"<div><p>Lightweight modules are essential for next-generation vehicle-integrated photovoltaic (VIPV) applications, such as solar-powered cars, allowing integration of solar cells beyond the roof, and on the hood, boot and body panels, and thereby extending the driving range. However, the lightweight module's reliability and corresponding degradation mechanisms under various environmental stresses are less researched. In this work, we investigate interconnection and encapsulation strategies to improve reliability against damp heat and mechanical impact. We fabricated lightweight mini modules, weighing around 3.45 kg/m<sup>2</sup>, and conducted hail impact and damp heat tests. These tests result in different failures, such as cracks in the solar cell, module delamination, and microcracks in the backsheet. By carrying out failure mechanism analysis and altering the fiber reinforcement in backsheet and encapsulation materials, we can increase resilience to these failure modes, thus providing guidance for the design of lightweight PV modules for next-generation VIPV.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824002447","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight modules are essential for next-generation vehicle-integrated photovoltaic (VIPV) applications, such as solar-powered cars, allowing integration of solar cells beyond the roof, and on the hood, boot and body panels, and thereby extending the driving range. However, the lightweight module's reliability and corresponding degradation mechanisms under various environmental stresses are less researched. In this work, we investigate interconnection and encapsulation strategies to improve reliability against damp heat and mechanical impact. We fabricated lightweight mini modules, weighing around 3.45 kg/m2, and conducted hail impact and damp heat tests. These tests result in different failures, such as cracks in the solar cell, module delamination, and microcracks in the backsheet. By carrying out failure mechanism analysis and altering the fiber reinforcement in backsheet and encapsulation materials, we can increase resilience to these failure modes, thus providing guidance for the design of lightweight PV modules for next-generation VIPV.

改善轻型光伏模块机械冲击和湿热可靠性的封装策略,实现车载集成应用
轻质模块对于下一代车载集成光伏(VIPV)应用(如太阳能汽车)至关重要,可将太阳能电池集成到车顶以外、引擎盖、行李箱和车身面板上,从而延长行驶里程。然而,人们对轻质模块在各种环境压力下的可靠性和相应的退化机制研究较少。在这项工作中,我们研究了互联和封装策略,以提高抗湿热和机械冲击的可靠性。我们制作了重量约为 3.45 kg/m2 的轻型微型模块,并进行了冰雹冲击和湿热测试。这些测试导致了不同的故障,如太阳能电池裂缝、模块脱层和背板微裂缝。通过失效机理分析以及改变背板和封装材料中的纤维加固方式,我们可以提高对这些失效模式的适应能力,从而为下一代 VIPV 的轻型光伏组件设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信