Kang Li , Mengjun Zhang , Libo Xu , Guangbao Zhang , Xinyi Bai , Weishuang Zheng , Yi Huang
{"title":"Disruption of microbiota induced by polyethylene microplastics alters defense response of earthworms Eisenia fetida","authors":"Kang Li , Mengjun Zhang , Libo Xu , Guangbao Zhang , Xinyi Bai , Weishuang Zheng , Yi Huang","doi":"10.1016/j.apsoil.2024.105452","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics, recognized as some of the most pervasive and enduring pollutants, have emerged as a potential threat to environmental eco-health. While much is known about the effects of microplastics on soil microorganisms, our understanding of how they interact with terrestrial organisms and the underlying mechanisms remains limited. In this study, the effects of polyethylene microplastics at a concentration of 0.5 % (w/w) on the antioxidant enzymes, gut microbiota of <em>Eisenia fetida</em> and the soil microbiota on days 1, 3, 7, 15, and 30 were investigated. The results indicated that exposure to microplastics slightly increased the activities of superoxide dismutase (1.22-fold on day 3, 1.12-fold on day 7) and catalase (1.10-fold on day 3, 1.09-fold on day 7) in <em>E. fetida</em>, while exposure markedly decreased peroxidase activity (1.33- to 1.79-fold) throughout the whole period. Both the soil microbiota and the gut microbiota of <em>E. fetida</em> in terms of diversity and composition were significantly affected by the microplastic amendment, and their structure tended to be similar throughout the exposure time. The family Nocardiaceae was significantly enriched in both the soil and <em>E. fetida</em> gut biota with microplastic exposure. Our results demonstrated that the antioxidant enzyme response of <em>E. fetida</em> was closely related to both the microbiota, although this relationship with the gut microbiota may have been weakened by microplastic exposure. Overall, this study furnishes new perspectives on the ecotoxicity of microplastics, revealing significant implications for the vitality of soil-dwelling organisms and the overarching health of terrestrial ecosystems.</p></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324001835","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics, recognized as some of the most pervasive and enduring pollutants, have emerged as a potential threat to environmental eco-health. While much is known about the effects of microplastics on soil microorganisms, our understanding of how they interact with terrestrial organisms and the underlying mechanisms remains limited. In this study, the effects of polyethylene microplastics at a concentration of 0.5 % (w/w) on the antioxidant enzymes, gut microbiota of Eisenia fetida and the soil microbiota on days 1, 3, 7, 15, and 30 were investigated. The results indicated that exposure to microplastics slightly increased the activities of superoxide dismutase (1.22-fold on day 3, 1.12-fold on day 7) and catalase (1.10-fold on day 3, 1.09-fold on day 7) in E. fetida, while exposure markedly decreased peroxidase activity (1.33- to 1.79-fold) throughout the whole period. Both the soil microbiota and the gut microbiota of E. fetida in terms of diversity and composition were significantly affected by the microplastic amendment, and their structure tended to be similar throughout the exposure time. The family Nocardiaceae was significantly enriched in both the soil and E. fetida gut biota with microplastic exposure. Our results demonstrated that the antioxidant enzyme response of E. fetida was closely related to both the microbiota, although this relationship with the gut microbiota may have been weakened by microplastic exposure. Overall, this study furnishes new perspectives on the ecotoxicity of microplastics, revealing significant implications for the vitality of soil-dwelling organisms and the overarching health of terrestrial ecosystems.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.