GAMA: A multi-graph-based anomaly detection framework for business processes via graph neural networks

IF 3 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wei Guan, Jian Cao, Yang Gu, Shiyou Qian
{"title":"GAMA: A multi-graph-based anomaly detection framework for business processes via graph neural networks","authors":"Wei Guan,&nbsp;Jian Cao,&nbsp;Yang Gu,&nbsp;Shiyou Qian","doi":"10.1016/j.is.2024.102405","DOIUrl":null,"url":null,"abstract":"<div><p>Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting anomalies is important for the management and optimization of business processes. However, prevailing anomaly detection approaches often fail to capture crucial structural information about the underlying process. To address this, we propose a multi-Graph based Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of structural process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied to model a trace in which each attribute is modeled as a separate graph. In particular, the graph constructed for the special attribute <em>activity</em> reflects the control flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder on multiple graphs to detect anomalies in terms of the reconstruction errors. Moreover, three teacher forcing styles are designed to enhance GAMA’s ability to reconstruct normal behaviors and thus improve detection performance. We conduct extensive experiments on both synthetic logs and real-life logs. The experiment results demonstrate that GAMA outperforms state-of-the-art methods for both trace-level and attribute-level anomaly detection.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102405"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000632","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalies in business processes are inevitable for various reasons such as system failures and operator errors. Detecting anomalies is important for the management and optimization of business processes. However, prevailing anomaly detection approaches often fail to capture crucial structural information about the underlying process. To address this, we propose a multi-Graph based Anomaly detection fraMework for business processes via grAph neural networks, named GAMA. GAMA makes use of structural process information and attribute information in a more integrated way. In GAMA, multiple graphs are applied to model a trace in which each attribute is modeled as a separate graph. In particular, the graph constructed for the special attribute activity reflects the control flow. Then GAMA employs a multi-graph encoder and a multi-sequence decoder on multiple graphs to detect anomalies in terms of the reconstruction errors. Moreover, three teacher forcing styles are designed to enhance GAMA’s ability to reconstruct normal behaviors and thus improve detection performance. We conduct extensive experiments on both synthetic logs and real-life logs. The experiment results demonstrate that GAMA outperforms state-of-the-art methods for both trace-level and attribute-level anomaly detection.

GAMA:基于图神经网络的业务流程多图异常检测框架
由于系统故障和操作员失误等各种原因,业务流程中出现异常是不可避免的。检测异常对于管理和优化业务流程非常重要。然而,现有的异常检测方法往往无法捕捉到底层流程的关键结构信息。为了解决这个问题,我们提出了一种通过 grAph 神经网络进行业务流程多图异常检测的方法,命名为 GAMA。GAMA 以更综合的方式利用结构性流程信息和属性信息。在 GAMA 中,多个图被应用于跟踪建模,其中每个属性都作为一个单独的图建模。特别是,为特殊属性活动构建的图反映了控制流。然后,GAMA 在多个图上使用多图编码器和多序列解码器来检测重建错误方面的异常。此外,我们还设计了三种教师强制风格,以增强 GAMA 重构正常行为的能力,从而提高检测性能。我们在合成日志和真实日志上进行了大量实验。实验结果表明,在轨迹级和属性级异常检测方面,GAMA 都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Systems
Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
2.70%
发文量
112
审稿时长
53 days
期刊介绍: Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems. Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信