Mu-Rong Kao , Rebecka Karmarkar Saldivar , Yves S.Y. Hsieh
{"title":"Production of therapeutic glycoproteins in glycoengineered plant: old farm for new crops","authors":"Mu-Rong Kao , Rebecka Karmarkar Saldivar , Yves S.Y. Hsieh","doi":"10.1016/j.copbio.2024.103145","DOIUrl":null,"url":null,"abstract":"<div><p>Plant-based expression systems have emerged as promising avenues for the production of recombinant <em>N</em>-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived <em>N</em>-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with <em>N</em>-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced <em>N</em>-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103145"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924000818/pdfft?md5=fd84574d0ef648eb853f5ffa6c80b3e7&pid=1-s2.0-S0958166924000818-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000818","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-based expression systems have emerged as promising avenues for the production of recombinant N-linked glycoproteins. This review offers insights into the evolution and progress of plant glycoengineering. It delves into the distinctive features of plant-derived N-glycans, the diverse range of plant hosts employed for glycoprotein synthesis, and the advancements in glycoengineering strategies aimed at generating glycoproteins with N-glycan structures akin to those produced in mammalian cell lines. Furthermore, alternative strategies for augmenting glycoengineering efforts and the current spectrum of applications for plant-produced N-glycan recombinant proteins are examined, underscoring their potential significance in biopharmaceutical manufacturing.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.