{"title":"Goodness-of-fit tests for modified Poisson regression possibly producing fitted values exceeding one in binary outcome analysis.","authors":"Yasuhiro Hagiwara, Yutaka Matsuyama","doi":"10.1177/09622802241254220","DOIUrl":null,"url":null,"abstract":"<p><p>Modified Poisson regression, which estimates the regression parameters in the log-binomial regression model using the Poisson quasi-likelihood estimating equation and robust variance, is a useful tool for estimating the adjusted risk and prevalence ratio in binary outcome analysis. Although several goodness-of-fit tests have been developed for other binary regressions, few goodness-of-fit tests are available for modified Poisson regression. In this study, we proposed several goodness-of-fit tests for modified Poisson regression, including the modified Hosmer-Lemeshow test with empirical variance, Tsiatis test, normalized Pearson chi-square tests with binomial variance and Poisson variance, and normalized residual sum of squares test. The original Hosmer-Lemeshow test and normalized Pearson chi-square test with binomial variance are inappropriate for the modified Poisson regression, which can produce a fitted value exceeding 1 owing to the unconstrained parameter space. A simulation study revealed that the normalized residual sum of squares test performed well regarding the type I error probability and the power for a wrong link function. We applied the proposed goodness-of-fit tests to the analysis of cross-sectional data of patients with cancer. We recommend the normalized residual sum of squares test as a goodness-of-fit test in the modified Poisson regression.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1185-1196"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241254220","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Modified Poisson regression, which estimates the regression parameters in the log-binomial regression model using the Poisson quasi-likelihood estimating equation and robust variance, is a useful tool for estimating the adjusted risk and prevalence ratio in binary outcome analysis. Although several goodness-of-fit tests have been developed for other binary regressions, few goodness-of-fit tests are available for modified Poisson regression. In this study, we proposed several goodness-of-fit tests for modified Poisson regression, including the modified Hosmer-Lemeshow test with empirical variance, Tsiatis test, normalized Pearson chi-square tests with binomial variance and Poisson variance, and normalized residual sum of squares test. The original Hosmer-Lemeshow test and normalized Pearson chi-square test with binomial variance are inappropriate for the modified Poisson regression, which can produce a fitted value exceeding 1 owing to the unconstrained parameter space. A simulation study revealed that the normalized residual sum of squares test performed well regarding the type I error probability and the power for a wrong link function. We applied the proposed goodness-of-fit tests to the analysis of cross-sectional data of patients with cancer. We recommend the normalized residual sum of squares test as a goodness-of-fit test in the modified Poisson regression.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)