{"title":"Characterization of novel HIV fusion-inhibitory lipopeptides with the M-T hook structure","authors":"Xiuzhu Geng , Xiaohui Ding , Yuanmei Zhu , Huihui Chong , Yuxian He","doi":"10.1016/j.micinf.2024.105366","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Combination antiretroviral therapy (cART) has significantly improved the survival of HIV-infected individuals, but long-term treatment can cause side-effects and drug resistance; thus, the development of new antivirals is of importance. We previously identified an M-T hook structure and accordingly designed short-peptide fusion inhibitor<span><span> 2P23, which mainly targets the gp41<span> pocket site and displays potent, broad-spectrum anti-HIV activity. In this study, we continuingly characterized the amino acid sequences of peptide and lipopeptide-based inhibitors containing the M-T hook residues. Among a group of lipopeptides, </span></span>stearic acid (C18)-modified LP-25 and LP-29 exhibited greatly improved inhibitions against divergent HIV-1 subtypes and drug-resistant mutants. LP-25 and LP-29 were evaluated in </span></span>rhesus macaques, and the </span><em>ex vivo</em> inhibition data demonstrated their potent, long-lasting <em>in vivo</em><span> anti-HIV activity, with LP-25 much better than LP-29. Both the lipopeptides displayed high α-helicity, thermostability<span> and binding ability to a target-mimic peptide, and they were metabolically stable when treated with high temperature, proteolytic enzymes<span><span>, human or monkey sera and human liver microsomes. Therefore, our studies have provided critical information for understanding the structure-activity relationship of HIV fusion inhibitors with the M-T hook structure and offered novel candidates for </span>drug development.</span></span></span></div></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":"26 8","pages":"Article 105366"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924001023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Combination antiretroviral therapy (cART) has significantly improved the survival of HIV-infected individuals, but long-term treatment can cause side-effects and drug resistance; thus, the development of new antivirals is of importance. We previously identified an M-T hook structure and accordingly designed short-peptide fusion inhibitor 2P23, which mainly targets the gp41 pocket site and displays potent, broad-spectrum anti-HIV activity. In this study, we continuingly characterized the amino acid sequences of peptide and lipopeptide-based inhibitors containing the M-T hook residues. Among a group of lipopeptides, stearic acid (C18)-modified LP-25 and LP-29 exhibited greatly improved inhibitions against divergent HIV-1 subtypes and drug-resistant mutants. LP-25 and LP-29 were evaluated in rhesus macaques, and the ex vivo inhibition data demonstrated their potent, long-lasting in vivo anti-HIV activity, with LP-25 much better than LP-29. Both the lipopeptides displayed high α-helicity, thermostability and binding ability to a target-mimic peptide, and they were metabolically stable when treated with high temperature, proteolytic enzymes, human or monkey sera and human liver microsomes. Therefore, our studies have provided critical information for understanding the structure-activity relationship of HIV fusion inhibitors with the M-T hook structure and offered novel candidates for drug development.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.