{"title":"A novel procedure for the quantification of antifungal activity against filamentous fungi, mycelial invasion distance (MID) method","authors":"Shinobu Oda , Sonomi Karasawa , Kurea Satoh","doi":"10.1016/j.mimet.2024.106958","DOIUrl":null,"url":null,"abstract":"<div><p>A novel method for the quantification of antifungal activity of fungicides and painted surfaces, mycelial invasion distance (MID) method, was developed and applied to the quantification of activities of parabens and an antifungal paint. In this method, the MID of aerial mycelia on a test paper or a panel placed on a nutrient agar plate was measured with a stereoscopic microscope and a micro-ruler. The antifungal activities of the parabens and painted surfaces were expressed as the MID. The higher the hydrophobicity of parabens, the longer the MID, that is the lower the antifungal activity, were observed. Conversely, relatively polar parabens, such as methyl and ethyl parabens, exhibited stronger antifungal activity, that is shorter MID. The most hydrophobic paraben, benzyl paraben, showed the weakest antifungal activity. Furthermore, it was confirmed that the MID method was effective for the evaluation of the painted surfaces.</p></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":"222 ","pages":"Article 106958"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167701224000708","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel method for the quantification of antifungal activity of fungicides and painted surfaces, mycelial invasion distance (MID) method, was developed and applied to the quantification of activities of parabens and an antifungal paint. In this method, the MID of aerial mycelia on a test paper or a panel placed on a nutrient agar plate was measured with a stereoscopic microscope and a micro-ruler. The antifungal activities of the parabens and painted surfaces were expressed as the MID. The higher the hydrophobicity of parabens, the longer the MID, that is the lower the antifungal activity, were observed. Conversely, relatively polar parabens, such as methyl and ethyl parabens, exhibited stronger antifungal activity, that is shorter MID. The most hydrophobic paraben, benzyl paraben, showed the weakest antifungal activity. Furthermore, it was confirmed that the MID method was effective for the evaluation of the painted surfaces.
期刊介绍:
The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach.
All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.