Ana Vučković, Christoph Freyer, Anna Wredenberg, Hauke S Hillen
{"title":"The molecular machinery for maturation of primary mtDNA transcripts.","authors":"Ana Vučković, Christoph Freyer, Anna Wredenberg, Hauke S Hillen","doi":"10.1093/hmg/ddae023","DOIUrl":null,"url":null,"abstract":"<p><p>Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae023","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.