Revolutionizing Infertility Management through Novel Peptide-based Targets.

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vijay Kumar, Gaurav Doshi
{"title":"Revolutionizing Infertility Management through Novel Peptide-based Targets.","authors":"Vijay Kumar, Gaurav Doshi","doi":"10.2174/0113892037304433240430144106","DOIUrl":null,"url":null,"abstract":"<p><p>Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037304433240430144106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.

通过基于多肽的新型靶点实现不孕症治疗的革命性突破。
全世界约有 4 800 万对夫妇和 1.86 亿人患有不孕症;其中,约 85% 有可查明的原因,最常见的是排卵功能障碍、男性不育、多囊卵巢综合征和输卵管疾病。其余 15%的不孕原因不明,包括生活方式和环境因素。下丘脑-垂体-肾上腺轴(HPA)的调节对促性腺激素释放激素(GnRH)、黄体生成素(LH)和卵泡刺激素(FSH)的分泌至关重要,这些激素对女性生殖功能至关重要。GnRH 是主要的生殖轴调节器。GnRH、FSH 和 LH 的释放模式由其脉冲式分泌决定,进而控制性腺的内分泌功能和配子成熟。称为 Kisspeptin(KP)、Neurokinin-B(NKB)和 Orexin 的多肽对生殖过程中 GnRH、FSH 和 LH 分泌的正反馈调节均有影响。这篇综述文章主要介绍了 KP、NKB 和 Orexin 新型肽类靶点的历史、同工型和信号传导途径,包括临床和临床前研究,以及在治疗不孕症方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信