Recent Advances and Clinical Approach to Cancer Treatment with Nanotechnology Derived Biomolecule.

Q2 Pharmacology, Toxicology and Pharmaceutics
Atul Pratap Singh, Wasim Akhtar, Saif Alam, Naziya
{"title":"Recent Advances and Clinical Approach to Cancer Treatment with Nanotechnology Derived Biomolecule.","authors":"Atul Pratap Singh, Wasim Akhtar, Saif Alam, Naziya","doi":"10.2174/0122117385297455240508055620","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer nanomedicine has the potential to take advantage of the multifunctionality and diverse biological activity of nanostructures based on biomolecules. Novel drug delivery vehicles can be designed by programming the supramolecular features of biomolecules to achieve multiple therapeutic goals at once, including efficient in vivo transport and targeted drug administration. Proteins, peptides, nucleic acids, and polysaccharides can all be engineered into multipurpose nanomedicines. Even while numerous cancer medications reduce mortality, they are still insufficient. Early cancer cell detection and high-specificity therapeutic administration optimise treatment and prevent toxicity. Nanotechnology is improving cancer diagnosis and treatment due to increased systemic toxicity and refractoriness with current methods. Nanotechnology-based immunotherapeutic drugs have reduced cancer cell invasiveness while protecting healthy cells in several cancer types. Carbon nanotubes, polymeric micelles, and liposomes improve cancer medication pharmacokinetics and pharmacodynamics. Nanomedicines' use in patient care and promising nanotechnology-based cancer interventions have been covered in this article. Nanomaterials used in treating cancer have been discussed. Additionally, nanomaterial obstacles that hinder their applicability and clinical translation in certain cancer types are addressed.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385297455240508055620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer nanomedicine has the potential to take advantage of the multifunctionality and diverse biological activity of nanostructures based on biomolecules. Novel drug delivery vehicles can be designed by programming the supramolecular features of biomolecules to achieve multiple therapeutic goals at once, including efficient in vivo transport and targeted drug administration. Proteins, peptides, nucleic acids, and polysaccharides can all be engineered into multipurpose nanomedicines. Even while numerous cancer medications reduce mortality, they are still insufficient. Early cancer cell detection and high-specificity therapeutic administration optimise treatment and prevent toxicity. Nanotechnology is improving cancer diagnosis and treatment due to increased systemic toxicity and refractoriness with current methods. Nanotechnology-based immunotherapeutic drugs have reduced cancer cell invasiveness while protecting healthy cells in several cancer types. Carbon nanotubes, polymeric micelles, and liposomes improve cancer medication pharmacokinetics and pharmacodynamics. Nanomedicines' use in patient care and promising nanotechnology-based cancer interventions have been covered in this article. Nanomaterials used in treating cancer have been discussed. Additionally, nanomaterial obstacles that hinder their applicability and clinical translation in certain cancer types are addressed.

利用纳米技术衍生生物分子治疗癌症的最新进展和临床方法。
癌症纳米医学有可能利用基于生物分子的纳米结构的多功能性和多样化生物活性。通过对生物大分子的超分子特性进行编程,可以设计出新型的给药载体,同时实现多种治疗目标,包括高效的体内转运和靶向给药。蛋白质、肽、核酸和多糖都可以设计成多用途纳米药物。尽管许多抗癌药物都能降低死亡率,但它们仍然是不够的。早期癌细胞检测和高特异性治疗用药可优化治疗并防止毒性。纳米技术正在改善癌症的诊断和治疗,因为目前的方法会增加全身毒性和难治性。基于纳米技术的免疫治疗药物降低了癌细胞的侵袭性,同时保护了几种癌症类型中的健康细胞。碳纳米管、聚合物胶束和脂质体改善了癌症药物的药代动力学和药效学。本文介绍了纳米药物在患者护理中的应用以及基于纳米技术的前景看好的癌症干预措施。文章还讨论了用于治疗癌症的纳米材料。此外,还讨论了阻碍纳米材料在某些癌症类型中的应用和临床转化的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信