Erpan Ahat , Zanyu Shi , Shaoyou Chu , Hai Hoang Bui , Emily R. Mason , Disha M. Soni , Kenneth D. Roth , Michael James Chalmers , Adrian L. Oblak , Jie Zhang , Jesus A. Gutierrez , Timothy Richardson
{"title":"SHIP1 modulation and proteome characterization of microglia","authors":"Erpan Ahat , Zanyu Shi , Shaoyou Chu , Hai Hoang Bui , Emily R. Mason , Disha M. Soni , Kenneth D. Roth , Michael James Chalmers , Adrian L. Oblak , Jie Zhang , Jesus A. Gutierrez , Timothy Richardson","doi":"10.1016/j.jprot.2024.105198","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models.</p></div><div><h3>Significance</h3><p>Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391924001301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models.
Significance
Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.