{"title":"Artificial Intelligence and Lung Pathology.","authors":"Emanuel Caranfil, Kris Lami, Wataru Uegami, Junya Fukuoka","doi":"10.1097/PAP.0000000000000448","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript provides a comprehensive overview of the application of artificial intelligence (AI) in lung pathology, particularly in the diagnosis of lung cancer. It discusses various AI models designed to support pathologists and clinicians. AI models supporting pathologists are to standardize diagnosis, score PD-L1 status, supporting tumor cellularity count, and indicating explainability for pathologic judgements. Several models predict outcomes beyond pathologic diagnosis and predict clinical outcomes like patients' survival and molecular alterations. The manuscript emphasizes the potential of AI to enhance accuracy and efficiency in pathology, while also addressing the challenges and future directions for integrating AI into clinical practice.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000448","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This manuscript provides a comprehensive overview of the application of artificial intelligence (AI) in lung pathology, particularly in the diagnosis of lung cancer. It discusses various AI models designed to support pathologists and clinicians. AI models supporting pathologists are to standardize diagnosis, score PD-L1 status, supporting tumor cellularity count, and indicating explainability for pathologic judgements. Several models predict outcomes beyond pathologic diagnosis and predict clinical outcomes like patients' survival and molecular alterations. The manuscript emphasizes the potential of AI to enhance accuracy and efficiency in pathology, while also addressing the challenges and future directions for integrating AI into clinical practice.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.