Achieving stable lithium metal anodes via the synergy of electrostatic shielding and the high Li+ flux inorganic interphase†

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiangtao Yu, Xinyu Ma, Xiuyang Zou, Yin Hu, Mingchen Yang, Jinhua Yang, Shipeng Sun and Feng Yan
{"title":"Achieving stable lithium metal anodes via the synergy of electrostatic shielding and the high Li+ flux inorganic interphase†","authors":"Jiangtao Yu, Xinyu Ma, Xiuyang Zou, Yin Hu, Mingchen Yang, Jinhua Yang, Shipeng Sun and Feng Yan","doi":"10.1039/D4EE00399C","DOIUrl":null,"url":null,"abstract":"<p >Uncontrolled dendrite growth and slow Li<small><sup>+</sup></small> transport kinetics at the anode/electrolyte interface severely hamper the practical applications of lithium metal batteries (LMBs). Herein, a high–charge density cationic polymer, poly(octaallyltetraazacyclo–decane nitrate) (POTA–NO<small><sub>3</sub></small>), was developed as an anodic protective layer to moderate Li<small><sup>+</sup></small> deposition and enhance Li<small><sup>+</sup></small> transport efficiency. According to Li<small><sup>+</sup></small> deposition characteristics and simulation, POTA–NO<small><sub>3</sub></small> with multiple positive charge sites provided excellent electrostatic shielding and enhanced Li<small><sup>+</sup></small> desolvation process to the anodes. Meanwhile, anions generated a robust and high Li<small><sup>+</sup></small> flux inorganic SEI to inhibit the polymer cationic layer and electrolyte decomposition. With the POTA–NO<small><sub>3</sub></small> protective layer, Li||Li symmetric batteries achieved a stable cycling of 6300 h at a high current density of 5 mA cm<small><sup>−2</sup></small> with a capacity of 5 mA h cm<small><sup>−2</sup></small>. Furthermore, the POTA–NO<small><sub>3</sub></small>-protected Li||LiCoO<small><sub>2</sub></small> batteries exhibited a capacity retention of over 80% after 1400 long-term cycles at 1C. This work opens up the possibility for the development of stable lithium anodes.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee00399c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Uncontrolled dendrite growth and slow Li+ transport kinetics at the anode/electrolyte interface severely hamper the practical applications of lithium metal batteries (LMBs). Herein, a high–charge density cationic polymer, poly(octaallyltetraazacyclo–decane nitrate) (POTA–NO3), was developed as an anodic protective layer to moderate Li+ deposition and enhance Li+ transport efficiency. According to Li+ deposition characteristics and simulation, POTA–NO3 with multiple positive charge sites provided excellent electrostatic shielding and enhanced Li+ desolvation process to the anodes. Meanwhile, anions generated a robust and high Li+ flux inorganic SEI to inhibit the polymer cationic layer and electrolyte decomposition. With the POTA–NO3 protective layer, Li||Li symmetric batteries achieved a stable cycling of 6300 h at a high current density of 5 mA cm−2 with a capacity of 5 mA h cm−2. Furthermore, the POTA–NO3-protected Li||LiCoO2 batteries exhibited a capacity retention of over 80% after 1400 long-term cycles at 1C. This work opens up the possibility for the development of stable lithium anodes.

Abstract Image

通过静电屏蔽和高锂离子通量无机相的协同作用实现稳定的锂金属阳极
阳极/电解质界面上不受控制的枝晶生长和缓慢的锂+传输动力学严重限制了锂金属电池(LMB)的实用化进程。在此,我们开发了一种高电荷密度阳离子聚合物--聚(八烯丙基四氮杂环癸烷硝酸酯)(POTA-NO3)作为阳极保护层,以缓和 Li+ 沉积并提高 Li+ 传输效率。根据 Li+ 沉积特性和模拟结果,具有多个正电荷位点的 POTA-NO3 可提供出色的静电屏蔽,并增强阳极的 Li+ 解溶过程。同时,阴离子产生了强健的高 Li+ 通量无机 SEI,从而抑制了聚合物阳离子层和电解质的分解。有了 POTA-NO3 保护层,锂||锂对称电池在高电流密度(5 mA cm-2)条件下实现了 6300 小时的稳定循环,容量达到 5 mAh cm-2。此外,受 POTA-NO3 保护的 Li||LiCoO2 电池在 1C 下长期循环 1400 次后,容量保持率超过 80%。这项工作为开发稳定的锂负极提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信