Interference effects on light scattering properties of dense colloidal suspensions: a short review

IF 1.1 4区 物理与天体物理 Q4 OPTICS
Hiroyuki Fujii, Hyeonwoo Na, Koyata Nishikawa, Kazumichi Kobayashi, Masao Watanabe
{"title":"Interference effects on light scattering properties of dense colloidal suspensions: a short review","authors":"Hiroyuki Fujii, Hyeonwoo Na, Koyata Nishikawa, Kazumichi Kobayashi, Masao Watanabe","doi":"10.1007/s10043-024-00887-3","DOIUrl":null,"url":null,"abstract":"<p>Near-infrared spectroscopy and imaging using scattered light potentially evaluate the structural properties of the medium, like the average particle size, based on a relation between its structure and light scattering. A qualitative understanding of light scattering is crucial for developing optical imaging techniques. The scattering properties of dense colloidal suspensions have been extensively investigated using the electromagnetic theory (EMT). The colloidal suspensions are widely used in liquid tissue phantoms for optical imaging techniques and are encountered in various fields, such as the food and chemical industries. The interference between electric fields scattered by colloidal particles significantly influences the scattering properties, so-called the interference effects. Despite many efforts since the 1980s, a complete understanding of the interference effects has still not been achieved. The main reason is the complicated dependence of the interference on the optical wavelength, particle size, and so on. This paper briefly reviews numerical and theoretical studies of the interference effect based on the dependent scattering theory, one of the EMTs, and model equations.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00887-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared spectroscopy and imaging using scattered light potentially evaluate the structural properties of the medium, like the average particle size, based on a relation between its structure and light scattering. A qualitative understanding of light scattering is crucial for developing optical imaging techniques. The scattering properties of dense colloidal suspensions have been extensively investigated using the electromagnetic theory (EMT). The colloidal suspensions are widely used in liquid tissue phantoms for optical imaging techniques and are encountered in various fields, such as the food and chemical industries. The interference between electric fields scattered by colloidal particles significantly influences the scattering properties, so-called the interference effects. Despite many efforts since the 1980s, a complete understanding of the interference effects has still not been achieved. The main reason is the complicated dependence of the interference on the optical wavelength, particle size, and so on. This paper briefly reviews numerical and theoretical studies of the interference effect based on the dependent scattering theory, one of the EMTs, and model equations.

Abstract Image

致密胶体悬浮液光散射特性的干扰效应:简评
根据介质结构与光散射之间的关系,利用散射光进行近红外光谱分析和成像可以评估介质的结构特性,如平均粒径。对光散射的定性了解对于开发光学成像技术至关重要。人们利用电磁理论(EMT)对致密胶体悬浮液的散射特性进行了广泛研究。胶体悬浮液被广泛应用于光学成像技术的液体组织模型中,并在食品和化学工业等多个领域得到应用。胶体颗粒散射的电场之间的干扰会极大地影响散射特性,即所谓的干扰效应。尽管自 20 世纪 80 年代以来人们做出了许多努力,但对干涉效应的完全理解仍未实现。主要原因是干涉与光波长、颗粒大小等的关系十分复杂。本文简要回顾了基于隶属散射理论之一的 EMT 和模型方程对干涉效应的数值和理论研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信