GNSS signal ray-tracing algorithm for the simulation of satellite-to-satellite excess phase in the neutral atmosphere

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Adam Cegla, Witold Rohm, Gregor Moeller, Paweł Hordyniec, Estera Trzcina, Natalia Hanna
{"title":"GNSS signal ray-tracing algorithm for the simulation of satellite-to-satellite excess phase in the neutral atmosphere","authors":"Adam Cegla, Witold Rohm, Gregor Moeller, Paweł Hordyniec, Estera Trzcina, Natalia Hanna","doi":"10.1007/s00190-024-01847-0","DOIUrl":null,"url":null,"abstract":"<p>Traditionally, GNSS space-based and ground-based estimates of tropospheric conditions are performed separately. It leads to limitations in the horizontal (e.g., a single space-based radio occultation profile covers a 300 km slice of the troposphere) and vertical resolution (e.g., ground-based estimates of troposphere conditions have spacing equal to stations’ distribution) of the tropospheric products. The first stage to achieve an integrated model is to create an effective 3D ray-tracing algorithm for the satellite-to-satellite (radio occultation) path reconstruction. We verify the consistency of the simulated data with the RO observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) Data Analysis and Archive Center (CDAAC) in terms of excess phase and bending angle. The results show that our solution provides an effective RO excess phase, with a relative error varying from 35% at the height of 25–30 km (1.0–1.5 m) to 0.5% at heights 5–10 km (0.1–1 m) and 14 to 2% at heights below 5 km (2–14 m). The bending angle retrieval on simulated data attained for high-resolution ray-tracing, bias lower than 2% with respect to the observed bending angle. The optimal solution takes about 1 s for one transmitter–receiver pair with a tangent point below 5 km altitude. The high-resolution processing solution takes 3 times longer.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"40 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01847-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, GNSS space-based and ground-based estimates of tropospheric conditions are performed separately. It leads to limitations in the horizontal (e.g., a single space-based radio occultation profile covers a 300 km slice of the troposphere) and vertical resolution (e.g., ground-based estimates of troposphere conditions have spacing equal to stations’ distribution) of the tropospheric products. The first stage to achieve an integrated model is to create an effective 3D ray-tracing algorithm for the satellite-to-satellite (radio occultation) path reconstruction. We verify the consistency of the simulated data with the RO observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) Data Analysis and Archive Center (CDAAC) in terms of excess phase and bending angle. The results show that our solution provides an effective RO excess phase, with a relative error varying from 35% at the height of 25–30 km (1.0–1.5 m) to 0.5% at heights 5–10 km (0.1–1 m) and 14 to 2% at heights below 5 km (2–14 m). The bending angle retrieval on simulated data attained for high-resolution ray-tracing, bias lower than 2% with respect to the observed bending angle. The optimal solution takes about 1 s for one transmitter–receiver pair with a tangent point below 5 km altitude. The high-resolution processing solution takes 3 times longer.

Abstract Image

用于模拟中性大气层中卫星与卫星间过度相位的全球导航卫星系统信号光线跟踪算法
传统上,全球导航卫星系统天基和地基对流层状况的估计是分开进行的。这导致对流层产品的水平分辨率(例如,单个天基无线电掩星剖面覆盖对流层 300 公里的切片)和垂直分辨率(例如,对流层状况的地基估算的间距等于台站的分布)受到限制。实现综合模型的第一阶段是为卫星到卫星(无线电掩星)路径重建创建有效的三维射线追踪算法。我们验证了模拟数据与来自气象、电离层和气候星座观测系统(COSMIC-1)数据分析和存档中心(CDAAC)的 RO 观测数据在过度相位和弯曲角方面的一致性。结果表明,我们的解决方案提供了有效的 RO 超相位,相对误差从 25-30 千米(1.0-1.5 米)高度的 35%到 5-10 千米(0.1-1 米)高度的 0.5%,以及 5 千米(2-14 米)以下高度的 14%到 2%不等。高分辨率光线跟踪模拟数据的弯曲角检索,与观测到的弯曲角相比,偏差低于 2%。对于切点低于 5 千米高度的一对发射机-接收机来说,最优解约需 1 秒钟。高分辨率处理方案则需要 3 倍的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信