HRSpecNET: A Deep Learning-Based High-Resolution Radar Micro-Doppler Signature Reconstruction for Improved HAR Classification

Sabyasachi Biswas;Ahmed Manavi Alam;Ali C. Gurbuz
{"title":"HRSpecNET: A Deep Learning-Based High-Resolution Radar Micro-Doppler Signature Reconstruction for Improved HAR Classification","authors":"Sabyasachi Biswas;Ahmed Manavi Alam;Ali C. Gurbuz","doi":"10.1109/TRS.2024.3396172","DOIUrl":null,"url":null,"abstract":"Micro-Doppler signatures (\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DSs) are widely used for human activity recognition (HAR) using radar. However, traditional methods for generating \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DS, such as the short-time Fourier transform (STFT), suffer from limitations, such as the tradeoff between time and frequency resolution, noise sensitivity, and parameter calibration. To address these limitations, we propose a novel deep learning (DL)-based approach to reconstruct high-resolution \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DS directly from a 1-D complex time-domain signal. Our DL architecture consists of an autoencoder (AE) block to improve signal-to-noise ratio (SNR), an STFT block to learn frequency transformations to generate pseudo spectrograms, and, finally, a U-Net block to reconstruct high-resolution spectrogram images. We evaluated our proposed architecture on both synthetic and real-world data. For synthetic data, we generated 1-D complex time-domain signals with multiple time-varying frequencies and evaluated and compared the ability of our network to generate high-resolution \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DS and perform in different SNR levels. For real-world data, a challenging radar-based American Sign Language (ASL) dataset consisting of 100 words was used to evaluate the classification performance achieved using the \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DS generated by the proposed approach. The results showed that the proposed approach outperforms the classification accuracy of traditional STFT-based \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DS by 3.48%. Both synthetic and experimental \n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\n-DSs show that the proposed approach learns to reconstruct higher resolution and sparser spectrograms.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"484-497"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10517750/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-Doppler signatures ( $\mu $ -DSs) are widely used for human activity recognition (HAR) using radar. However, traditional methods for generating $\mu $ -DS, such as the short-time Fourier transform (STFT), suffer from limitations, such as the tradeoff between time and frequency resolution, noise sensitivity, and parameter calibration. To address these limitations, we propose a novel deep learning (DL)-based approach to reconstruct high-resolution $\mu $ -DS directly from a 1-D complex time-domain signal. Our DL architecture consists of an autoencoder (AE) block to improve signal-to-noise ratio (SNR), an STFT block to learn frequency transformations to generate pseudo spectrograms, and, finally, a U-Net block to reconstruct high-resolution spectrogram images. We evaluated our proposed architecture on both synthetic and real-world data. For synthetic data, we generated 1-D complex time-domain signals with multiple time-varying frequencies and evaluated and compared the ability of our network to generate high-resolution $\mu $ -DS and perform in different SNR levels. For real-world data, a challenging radar-based American Sign Language (ASL) dataset consisting of 100 words was used to evaluate the classification performance achieved using the $\mu $ -DS generated by the proposed approach. The results showed that the proposed approach outperforms the classification accuracy of traditional STFT-based $\mu $ -DS by 3.48%. Both synthetic and experimental $\mu $ -DSs show that the proposed approach learns to reconstruct higher resolution and sparser spectrograms.
HRSpecNET:基于深度学习的高分辨率雷达微多普勒特征重构,用于改进 HAR 分类
微多普勒信号($\mu $ -DSs)被广泛用于利用雷达进行人类活动识别(HAR)。然而,生成 $\mu $ -DS 的传统方法(如短时傅立叶变换(STFT))存在一些局限性,如时间和频率分辨率之间的权衡、噪声灵敏度和参数校准。为了解决这些局限性,我们提出了一种基于深度学习(DL)的新方法,直接从一维复杂时域信号重建高分辨率的 $\mu $ -DS。我们的深度学习架构包括一个用于提高信噪比(SNR)的自动编码器(AE)模块、一个用于学习频率变换以生成伪频谱图的 STFT 模块,以及一个用于重建高分辨率频谱图图像的 U-Net 模块。我们在合成数据和真实世界数据上评估了我们提出的架构。对于合成数据,我们生成了具有多个时变频率的一维复杂时域信号,并评估和比较了我们的网络生成高分辨率 $\mu $ -DS 的能力以及在不同信噪比水平下的表现。对于真实世界的数据,我们使用了一个具有挑战性的基于雷达的美国手语(ASL)数据集,该数据集由 100 个单词组成,用于评估使用所提方法生成的 $\mu $ -DS 所实现的分类性能。结果表明,所提出的方法比传统的基于STFT的$\mu $ -DS的分类准确率高出3.48%。合成的和实验的$\mu $ -DS都表明,所提出的方法可以学习重建更高分辨率和更稀疏的频谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信