Bangul Khan , Zainab Riaz , Rafi u Shan Ahmad , Bee Luan Khoo
{"title":"Advancements in wearable sensors for cardiovascular disease detection for health monitoring","authors":"Bangul Khan , Zainab Riaz , Rafi u Shan Ahmad , Bee Luan Khoo","doi":"10.1016/j.mser.2024.100804","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread prevalence of cardiovascular diseases (CVDs) mandates meticulous and continuous monitoring for effective management and treatment. Wearable technologies have garnered substantial attention due to their seamless integration with bodily movements and biological systems. Researchers are actively exploring wearable technology from multidimensional angles, encompassing materials, design, and bioelectronics, to enhance CVD detection with greater sophistication and comfort. Enduring challenges, notably those surrounding material selection, persist, encompassing biocompatibility, conductivity, sensitivity, accuracy, and flexibility. Addressing these challenges is pivotal for adequate progress in wearable devices across many applications. Here, our review highlights the advancements in developing novel materials tailored for wearable technologies to detect cardiovascular diseases. The paper explicitly accentuates potential materials, architectural designs, operative mechanisms, and recent breakthroughs in flexible wearable sensors for CVD detection. The discussion explores diverse sensing mechanisms to monitor vital cardiac indicators, including piezoelectric, piezoresistive, capacitive, and triboelectric modalities. Furthermore, the paper provides a consolidated overview of contemporary efforts by different research teams in pulse wave sensors, heart sound sensors, ultrasound sensors, wearable ECG electrodes, and electro-biochemical sensors. We envision that the comprehensive analysis and juxtaposition of these distinct sensing mechanisms provide a more nuanced comprehension of their potential applications, constraints, and performance attributes within the wearable CVD health monitoring device framework.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100804"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000342","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread prevalence of cardiovascular diseases (CVDs) mandates meticulous and continuous monitoring for effective management and treatment. Wearable technologies have garnered substantial attention due to their seamless integration with bodily movements and biological systems. Researchers are actively exploring wearable technology from multidimensional angles, encompassing materials, design, and bioelectronics, to enhance CVD detection with greater sophistication and comfort. Enduring challenges, notably those surrounding material selection, persist, encompassing biocompatibility, conductivity, sensitivity, accuracy, and flexibility. Addressing these challenges is pivotal for adequate progress in wearable devices across many applications. Here, our review highlights the advancements in developing novel materials tailored for wearable technologies to detect cardiovascular diseases. The paper explicitly accentuates potential materials, architectural designs, operative mechanisms, and recent breakthroughs in flexible wearable sensors for CVD detection. The discussion explores diverse sensing mechanisms to monitor vital cardiac indicators, including piezoelectric, piezoresistive, capacitive, and triboelectric modalities. Furthermore, the paper provides a consolidated overview of contemporary efforts by different research teams in pulse wave sensors, heart sound sensors, ultrasound sensors, wearable ECG electrodes, and electro-biochemical sensors. We envision that the comprehensive analysis and juxtaposition of these distinct sensing mechanisms provide a more nuanced comprehension of their potential applications, constraints, and performance attributes within the wearable CVD health monitoring device framework.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.