{"title":"Rationality of four-valued families of Weil sums of binomials","authors":"Daniel J. Katz , Allison E. Wong","doi":"10.1016/j.jnt.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the rationality of Weil sums of binomials of the form <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>K</mi></mrow></msub><mi>ψ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>−</mo><mi>u</mi><mi>x</mi><mo>)</mo></math></span>, where <em>K</em> is a finite field whose canonical additive character is <em>ψ</em>, and where <em>u</em> is an element of <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span> and <em>s</em> is a positive integer relatively prime to <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, so that <span><math><mi>x</mi><mo>↦</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> is a permutation of <em>K</em>. The Weil spectrum for <em>K</em> and <em>s</em>, which is the family of values <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup></math></span> as <em>u</em> runs through <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if <em>s</em> is nondegenerate (i.e., if <em>s</em> is not a power of <em>p</em> modulo <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, where <em>p</em> is the characteristic of <em>K</em>). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where <span><math><mo>|</mo><mi>K</mi><mo>|</mo><mo>=</mo><mn>5</mn></math></span> and <span><math><mi>s</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001124/pdfft?md5=3a77361364a5e2eaf760bf070ef372d8&pid=1-s2.0-S0022314X24001124-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the rationality of Weil sums of binomials of the form , where K is a finite field whose canonical additive character is ψ, and where u is an element of and s is a positive integer relatively prime to , so that is a permutation of K. The Weil spectrum for K and s, which is the family of values as u runs through , is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if s is nondegenerate (i.e., if s is not a power of p modulo , where p is the characteristic of K). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where and .
我们研究形式为WuK,s=∑x∈Kψ(xs-ux)的二项式的魏尔和的合理性,其中K是一个有限域,其规范加法符为ψ,u是K×的一个元素,s是相对于|K×|质数的正整数,因此x↦xs是K的一个置换。K 和 s 的魏尔谱是 u 在 K× 中运行时的值族 WuK,s,它在算术几何和一些信息论应用中很有意义。如果 s 是非整数(即如果 s 不是 p 的幂 modulo |K×|,其中 p 是 K 的特征),Weil 频谱总是包含至少三个不同的值。我们已经知道,如果魏尔谱恰好包含三个不同的值,那么它们一定都是有理整数。我们将证明,如果魏尔谱恰好包含四个不同的值,那么它们一定都是有理整数,唯一的例外是 |K|=5 和 s≡3(mod4) 的情况。