Rationality of four-valued families of Weil sums of binomials

Pub Date : 2024-05-17 DOI:10.1016/j.jnt.2024.04.012
Daniel J. Katz , Allison E. Wong
{"title":"Rationality of four-valued families of Weil sums of binomials","authors":"Daniel J. Katz ,&nbsp;Allison E. Wong","doi":"10.1016/j.jnt.2024.04.012","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the rationality of Weil sums of binomials of the form <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>K</mi></mrow></msub><mi>ψ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>−</mo><mi>u</mi><mi>x</mi><mo>)</mo></math></span>, where <em>K</em> is a finite field whose canonical additive character is <em>ψ</em>, and where <em>u</em> is an element of <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span> and <em>s</em> is a positive integer relatively prime to <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, so that <span><math><mi>x</mi><mo>↦</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> is a permutation of <em>K</em>. The Weil spectrum for <em>K</em> and <em>s</em>, which is the family of values <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>u</mi></mrow><mrow><mi>K</mi><mo>,</mo><mi>s</mi></mrow></msubsup></math></span> as <em>u</em> runs through <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if <em>s</em> is nondegenerate (i.e., if <em>s</em> is not a power of <em>p</em> modulo <span><math><mo>|</mo><msup><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msup><mo>|</mo></math></span>, where <em>p</em> is the characteristic of <em>K</em>). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where <span><math><mo>|</mo><mi>K</mi><mo>|</mo><mo>=</mo><mn>5</mn></math></span> and <span><math><mi>s</mi><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001124/pdfft?md5=3a77361364a5e2eaf760bf070ef372d8&pid=1-s2.0-S0022314X24001124-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the rationality of Weil sums of binomials of the form WuK,s=xKψ(xsux), where K is a finite field whose canonical additive character is ψ, and where u is an element of K× and s is a positive integer relatively prime to |K×|, so that xxs is a permutation of K. The Weil spectrum for K and s, which is the family of values WuK,s as u runs through K×, is of interest in arithmetic geometry and in several information-theoretic applications. The Weil spectrum always contains at least three distinct values if s is nondegenerate (i.e., if s is not a power of p modulo |K×|, where p is the characteristic of K). It is already known that if the Weil spectrum contains precisely three distinct values, then they must all be rational integers. We show that if the Weil spectrum contains precisely four distinct values, then they must all be rational integers, with the sole exception of the case where |K|=5 and s3(mod4).

分享
查看原文
二项式魏尔和的四值族的合理性
我们研究形式为WuK,s=∑x∈Kψ(xs-ux)的二项式的魏尔和的合理性,其中K是一个有限域,其规范加法符为ψ,u是K×的一个元素,s是相对于|K×|质数的正整数,因此x↦xs是K的一个置换。K 和 s 的魏尔谱是 u 在 K× 中运行时的值族 WuK,s,它在算术几何和一些信息论应用中很有意义。如果 s 是非整数(即如果 s 不是 p 的幂 modulo |K×|,其中 p 是 K 的特征),Weil 频谱总是包含至少三个不同的值。我们已经知道,如果魏尔谱恰好包含三个不同的值,那么它们一定都是有理整数。我们将证明,如果魏尔谱恰好包含四个不同的值,那么它们一定都是有理整数,唯一的例外是 |K|=5 和 s≡3(mod4) 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信