Effects of high-temperature stress on gene expression related to photosynthesis in two jujube (Ziziphus jujuba Mill.) varieties.

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-05-22 DOI:10.1080/15592324.2024.2357367
Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu
{"title":"Effects of high-temperature stress on gene expression related to photosynthesis in two jujube (<i>Ziziphus jujuba</i> Mill.) varieties.","authors":"Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu","doi":"10.1080/15592324.2024.2357367","DOIUrl":null,"url":null,"abstract":"<p><p>Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2357367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.

高温胁迫对两个枣树品种光合作用相关基因表达的影响
温度升高对农作物的生长、发育和产量有着至关重要的影响,而光合作用是植物对温度最敏感的生理过程。本研究重点评估了两个不同耐热枣品种'君枣'(J)和'富贵米'(F)对高温胁迫(昼夜42°C/30°C)的光合响应和遗传适应性。对叶片光合指数、微观结构变化和转录组测序进行了比较分析。结果表明,F 的高温适应能力更强,表现为叶片气孔行为的改变--尤其是在 J 中,防御细胞表现出明显的失水、收缩和气孔开放减少,同时气孔密度明显增加。通过转录组测序,确定了 13,884 个差异表达基因 (DEG),这些基因在与植物-病原体相互作用、氨基酸生物合成、淀粉和蔗糖代谢以及碳水化合物代谢相关的通路中显著富集。主要研究结果包括发现光合作用通路相关 DEGs 和 HSFA1s 是热形态发生和热胁迫响应的核心调控因子。该研究揭示了参与热胁迫的关键光合基因,为理解红枣耐热性的分子机制提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信