{"title":"Pedestrian safety on the road to net zero: cross-sectional study of collisions with electric and hybrid-electric cars in Great Britain.","authors":"Phil J Edwards, Siobhan Moore, Craig Higgins","doi":"10.1136/jech-2024-221902","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plans to phase out fossil fuel-powered internal combustion engine (ICE) vehicles and to replace these with electric and hybrid-electric (E-HE) vehicles represent a historic step to reduce air pollution and address the climate emergency. However, there are concerns that E-HE cars are more hazardous to pedestrians, due to being quieter. We investigated and compared injury risks to pedestrians from E-HE and ICE cars in urban and rural environments.</p><p><strong>Methods: </strong>We conducted a cross-sectional study of pedestrians injured by cars or taxis in Great Britain. We estimated casualty rates per 100 million miles of travel by E-HE and ICE vehicles. Numerators (pedestrians) were extracted from STATS19 datasets. Denominators (car travel) were estimated by multiplying average annual mileage (using National Travel Survey datasets) by numbers of vehicles. We used Poisson regression to investigate modifying effects of environments where collisions occurred.</p><p><strong>Results: </strong>During 2013-2017, casualty rates per 100 million miles were 5.16 (95% CI 4.92 to 5.42) for E-HE vehicles and 2.40 (95%CI 2.38 to 2.41) for ICE vehicles, indicating that collisions were twice as likely (RR 2.15; 95% CI 2.05 to 2.26) with E-HE vehicles. Poisson regression found no evidence that E-HE vehicles were more dangerous in rural environments (RR 0.91; 95% CI 0.74 to 1.11); but strong evidence that E-HE vehicles were three times more dangerous than ICE vehicles in urban environments (RR 2.97; 95% CI 2.41 to 3.7). Sensitivity analyses of missing data support main findings.</p><p><strong>Conclusion: </strong>E-HE cars pose greater risk to pedestrians than ICE cars in urban environments. This risk must be mitigated as governments phase out petrol and diesel cars.</p>","PeriodicalId":54839,"journal":{"name":"Journal of Epidemiology and Community Health","volume":" ","pages":"487-492"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Epidemiology and Community Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jech-2024-221902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Plans to phase out fossil fuel-powered internal combustion engine (ICE) vehicles and to replace these with electric and hybrid-electric (E-HE) vehicles represent a historic step to reduce air pollution and address the climate emergency. However, there are concerns that E-HE cars are more hazardous to pedestrians, due to being quieter. We investigated and compared injury risks to pedestrians from E-HE and ICE cars in urban and rural environments.
Methods: We conducted a cross-sectional study of pedestrians injured by cars or taxis in Great Britain. We estimated casualty rates per 100 million miles of travel by E-HE and ICE vehicles. Numerators (pedestrians) were extracted from STATS19 datasets. Denominators (car travel) were estimated by multiplying average annual mileage (using National Travel Survey datasets) by numbers of vehicles. We used Poisson regression to investigate modifying effects of environments where collisions occurred.
Results: During 2013-2017, casualty rates per 100 million miles were 5.16 (95% CI 4.92 to 5.42) for E-HE vehicles and 2.40 (95%CI 2.38 to 2.41) for ICE vehicles, indicating that collisions were twice as likely (RR 2.15; 95% CI 2.05 to 2.26) with E-HE vehicles. Poisson regression found no evidence that E-HE vehicles were more dangerous in rural environments (RR 0.91; 95% CI 0.74 to 1.11); but strong evidence that E-HE vehicles were three times more dangerous than ICE vehicles in urban environments (RR 2.97; 95% CI 2.41 to 3.7). Sensitivity analyses of missing data support main findings.
Conclusion: E-HE cars pose greater risk to pedestrians than ICE cars in urban environments. This risk must be mitigated as governments phase out petrol and diesel cars.
期刊介绍:
The Journal of Epidemiology and Community Health is a leading international journal devoted to publication of original research and reviews covering applied, methodological and theoretical issues with emphasis on studies using multidisciplinary or integrative approaches. The journal aims to improve epidemiological knowledge and ultimately health worldwide.