Unlocking the potential of artificial intelligence in electrocardiogram biometrics: age-related changes, anomaly detection, and data authenticity in mobile health platforms.
Kathryn E Mangold, Rickey E Carter, Konstantinos C Siontis, Peter A Noseworthy, Francisco Lopez-Jimenez, Samuel J Asirvatham, Paul A Friedman, Zachi I Attia
{"title":"Unlocking the potential of artificial intelligence in electrocardiogram biometrics: age-related changes, anomaly detection, and data authenticity in mobile health platforms.","authors":"Kathryn E Mangold, Rickey E Carter, Konstantinos C Siontis, Peter A Noseworthy, Francisco Lopez-Jimenez, Samuel J Asirvatham, Paul A Friedman, Zachi I Attia","doi":"10.1093/ehjdh/ztae024","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Mobile devices such as smartphones and watches can now record single-lead electrocardiograms (ECGs), making wearables a potential screening tool for cardiac and wellness monitoring outside of healthcare settings. Because friends and family often share their smart phones and devices, confirmation that a sample is from a given patient is important before it is added to the electronic health record.</p><p><strong>Methods and results: </strong>We sought to determine whether the application of Siamese neural network would permit the diagnostic ECG sample to serve as both a medical test and biometric identifier. When using similarity scores to discriminate whether a pair of ECGs came from the same patient or different patients, inputs of single-lead and 12-lead medians produced an area under the curve of 0.94 and 0.97, respectively.</p><p><strong>Conclusion: </strong>The similar performance of the single-lead and 12-lead configurations underscores the potential use of mobile devices to monitor cardiac health.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Mobile devices such as smartphones and watches can now record single-lead electrocardiograms (ECGs), making wearables a potential screening tool for cardiac and wellness monitoring outside of healthcare settings. Because friends and family often share their smart phones and devices, confirmation that a sample is from a given patient is important before it is added to the electronic health record.
Methods and results: We sought to determine whether the application of Siamese neural network would permit the diagnostic ECG sample to serve as both a medical test and biometric identifier. When using similarity scores to discriminate whether a pair of ECGs came from the same patient or different patients, inputs of single-lead and 12-lead medians produced an area under the curve of 0.94 and 0.97, respectively.
Conclusion: The similar performance of the single-lead and 12-lead configurations underscores the potential use of mobile devices to monitor cardiac health.