Gustavo Lopes Puls, Guido Artemio Marañón-Vásquez, Christian Andrew Vargas Ramos, Caio Luiz Bitencourt Reis, Andréa Cândido Dos Reis, Maria Bernadete Sasso Stuani, Fábio Lourenço Romano, Mírian Aiko Nakane Matsumoto
{"title":"Insertion torque, flexural strength and surface alterations of stainless steel and titanium alloy orthodontic mini-implants: an in vitro study.","authors":"Gustavo Lopes Puls, Guido Artemio Marañón-Vásquez, Christian Andrew Vargas Ramos, Caio Luiz Bitencourt Reis, Andréa Cândido Dos Reis, Maria Bernadete Sasso Stuani, Fábio Lourenço Romano, Mírian Aiko Nakane Matsumoto","doi":"10.1590/2177-6709.29.2.e2423282.oar","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to compare the insertion torque (IT), flexural strength (FS) and surface alterations between stainless steel (SS-MIs) and titanium alloy (Ti-MIs) orthodontic mini-implants.</p><p><strong>Methods: </strong>Twenty-four MIs (2 x 10 mm; SS-MIs, n = 12; Ti-MIs, n = 12) were inserted on artificial bone blocks of 20 lb/ft3 (20 PCF) and 40 lb/ft3 (40 PCF) density. The maximum IT was recorded using a digital torque meter. FS was evaluated at 2, 3 and 4 mm-deflection. Surface topography and chemical composition of MIs were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). General linear and mixed models were used to assess the effect of the MI type, bone density and deflection on the evaluated outcomes.</p><p><strong>Results: </strong>The IT of Ti-MIs was 1.1 Ncm greater than that obtained for the SS-MIs (p= 0.018). The IT for MIs inserted in 40 PCF test blocks was 5.4 Ncm greater than that for those inserted in 20 PCF test blocks (p < 0.001). SS-MIs inserted in higher density bone (40 PCF) had significantly higher flexural strength than the other groups, at 2 mm (98.7 ± 5.1 Ncm), 3 mm (112.0 ± 3.9 Ncm) and 4 mm (120.0 ± 3.4 Ncm) of deflection (p< 0.001). SEM evidenced fractures in the Ti-MIs. EDS revealed incorporation of 18% of C and 2.06% of O in the loaded SS-MIs, and 3.91% of C in the loaded Ti-MIs.</p><p><strong>Conclusions: </strong>Based on the findings of this in vitro study, it seems that SS-MIs offer sufficient stability and exhibit greater mechanical strength, compared to Ti-MIs when inserted into higher density bone.</p>","PeriodicalId":38720,"journal":{"name":"Dental Press Journal of Orthodontics","volume":"29 2","pages":"e2423282"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104944/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Press Journal of Orthodontics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2177-6709.29.2.e2423282.oar","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to compare the insertion torque (IT), flexural strength (FS) and surface alterations between stainless steel (SS-MIs) and titanium alloy (Ti-MIs) orthodontic mini-implants.
Methods: Twenty-four MIs (2 x 10 mm; SS-MIs, n = 12; Ti-MIs, n = 12) were inserted on artificial bone blocks of 20 lb/ft3 (20 PCF) and 40 lb/ft3 (40 PCF) density. The maximum IT was recorded using a digital torque meter. FS was evaluated at 2, 3 and 4 mm-deflection. Surface topography and chemical composition of MIs were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). General linear and mixed models were used to assess the effect of the MI type, bone density and deflection on the evaluated outcomes.
Results: The IT of Ti-MIs was 1.1 Ncm greater than that obtained for the SS-MIs (p= 0.018). The IT for MIs inserted in 40 PCF test blocks was 5.4 Ncm greater than that for those inserted in 20 PCF test blocks (p < 0.001). SS-MIs inserted in higher density bone (40 PCF) had significantly higher flexural strength than the other groups, at 2 mm (98.7 ± 5.1 Ncm), 3 mm (112.0 ± 3.9 Ncm) and 4 mm (120.0 ± 3.4 Ncm) of deflection (p< 0.001). SEM evidenced fractures in the Ti-MIs. EDS revealed incorporation of 18% of C and 2.06% of O in the loaded SS-MIs, and 3.91% of C in the loaded Ti-MIs.
Conclusions: Based on the findings of this in vitro study, it seems that SS-MIs offer sufficient stability and exhibit greater mechanical strength, compared to Ti-MIs when inserted into higher density bone.
期刊介绍:
The Dental Press Journal of Orthodontics publishes scientific research articles, significant reviews, clinical and technical case reports, brief communications, and other materials related to Orthodontics and Facial Orthopedics.