Yue Deng, Guangjiu Chen, Xuedong Bao, Jie He, Qiang Li
{"title":"Mitochondrial genomic characteristics and phylogenetic analysis of a brewing fungus, <i>Rhizopus microsporus</i> Tiegh. 1875 (Mucorales: Rhizopodaceae).","authors":"Yue Deng, Guangjiu Chen, Xuedong Bao, Jie He, Qiang Li","doi":"10.1080/23802359.2024.2356133","DOIUrl":null,"url":null,"abstract":"<p><p><i>Rhizopus microsporus</i> Tiegh. 1875 is widely used in a variety of industries, such as brewing, wine making, baking, and medicine production, as it has the capability to break down proteins and generate surface-active agents. To date, the mitochondrial genome features of early evolved fungi from the <i>Rhizopus</i> genus have not been extensively studied. Our research obtained a full mitochondrial genome of <i>R. microsporus</i> species, which was 43,837 bp in size and had a GC content of 24.93%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 7 intronic ORFs, 24 tRNAs, and 2 rRNA genes. Through the use of the BI phylogenetic inference method, we were able to create phylogenetic trees for 25 early differentiation fungi which strongly supported the major clades; this indicated that <i>R. microsporus</i> is most closely related to <i>Rhizopus oryzae</i>.</p>","PeriodicalId":18647,"journal":{"name":"Mitochondrial DNA. Part B, Resources","volume":"9 5","pages":"657-662"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial DNA. Part B, Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/23802359.2024.2356133","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhizopus microsporus Tiegh. 1875 is widely used in a variety of industries, such as brewing, wine making, baking, and medicine production, as it has the capability to break down proteins and generate surface-active agents. To date, the mitochondrial genome features of early evolved fungi from the Rhizopus genus have not been extensively studied. Our research obtained a full mitochondrial genome of R. microsporus species, which was 43,837 bp in size and had a GC content of 24.93%. This genome contained 14 core protein-coding genes, 3 independent ORFs, 7 intronic ORFs, 24 tRNAs, and 2 rRNA genes. Through the use of the BI phylogenetic inference method, we were able to create phylogenetic trees for 25 early differentiation fungi which strongly supported the major clades; this indicated that R. microsporus is most closely related to Rhizopus oryzae.
期刊介绍:
This open access journal publishes high-quality and concise research articles reporting the sequence of full mitochondrial genomes, and short communications focusing on the physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism and interactions.