NMR and LC-MS-based metabolomics to investigate the efficacy of a commercial bio stimulant for the treatment of wheat (Triticum aestivum).

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Kamar Hamade, Ophelie Fliniaux, Jean-Xavier Fontaine, Roland Molinié, Laurent Petit, David Mathiron, Vivien Sarazin, Francois Mesnard
{"title":"NMR and LC-MS-based metabolomics to investigate the efficacy of a commercial bio stimulant for the treatment of wheat (Triticum aestivum).","authors":"Kamar Hamade, Ophelie Fliniaux, Jean-Xavier Fontaine, Roland Molinié, Laurent Petit, David Mathiron, Vivien Sarazin, Francois Mesnard","doi":"10.1007/s11306-024-02131-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging.</p><p><strong>Objective: </strong>However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied.</p><p><strong>Method: </strong>Therefore, the present study used <sup>1</sup>H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat.</p><p><strong>Results: </strong>Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification.</p><p><strong>Conclusion: </strong>These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02131-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging.

Objective: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied.

Method: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat.

Results: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification.

Conclusion: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.

Abstract Image

基于 NMR 和 LC-MS 的代谢组学研究一种商业生物刺激剂对小麦(Triticum aestivum)的功效。
简介:生物刺激剂是通过调节植物的生理过程和新陈代谢来改善植物生长和提高作物产量的物质和/或微生物。虽然研究主要集中在生物刺激剂对作物的广泛影响,但利用代谢组学分析了解其对植物细胞和分子的影响,可以阐明其有效性,并为微调其应用提供可能性。目的:然而,使用这种生物刺激剂的植物是否会产生新陈代谢反应,以及后者可能调节植物新陈代谢的方式尚未得到研究:因此,本研究使用 1H-NMR 和 LC-MS 评估了使用该生物刺激剂的小麦(Triticum aestivum)根、茎和叶中初级和次级代谢物的变化。正交偏最小二乘法判别分析有效区分了处理样本和对照样本,证实了小麦根、茎和叶对处理的代谢反应:结果:折叠变化分析表明,使用生物刺激液处理似乎提高了植物不同部位的羟基肉桂酸酰胺、木质素和类黄酮代谢水平,可能促进了根系生长、植入、发育细胞壁成熟和木质化:这些结果表明,非靶向代谢组学方法可用于研究和监测基于系统反应的新农业生态解决方案的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信