Yang Wang, Yimeng Wang, Xing Chen, Mingyao Zhu, Yang Xu, Yihui Wu, Sujun Gao, Ming Zhang, Long Su, Wei Han, Mingbo Chi
{"title":"Label-Free Identification of AML1-ETO Positive Acute Myeloid Leukemia Using Single-Cell Raman Spectroscopy.","authors":"Yang Wang, Yimeng Wang, Xing Chen, Mingyao Zhu, Yang Xu, Yihui Wu, Sujun Gao, Ming Zhang, Long Su, Wei Han, Mingbo Chi","doi":"10.1177/00037028241254403","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a malignant hematological tumor disease. Chromosomal abnormality is an independent prognostic factor in AML. AML with t(8:21) (q22; q22)/AML1-ETO (AE) is an independent disease group. In this research, a new method based on Raman spectroscopy is reported for label-free single-cell identification and analysis of AE fusion genes in clinical AML patients. Raman spectroscopy reflects the intrinsic vibration information of molecules in a label-free and non-destructive manner, and the fingerprint Raman spectrum of cells characterizes intracellular molecular types and relative concentration information, so as to realize the identification and molecular metabolism analysis of different kinds of cells. We collected the Raman spectra of bone marrow cells from clinically diagnosed AML M2 patients with and without the AE fusion gene. Through comparison of the average spectra and identification analysis based on multivariate statistical methods such as principal component analysis and linear discriminant analysis, the distinction between AE positive and negative sample cells in M2 AML patients was successfully achieved, and the single-cell identification accuracy was more than 90%. At the same time, the Raman spectra of the two types of cells were analyzed by the multivariate curve resolution alternating least squares decomposition method. It was found that the presence of the AE fusion gene may lead to the metabolic changes of lipid and nucleic acid in AML cells, which was consistent with the results of genomic and metabolomic multi-omics studies. The above results indicate that single-cell Raman spectroscopy has the potential for early identification of AE-positive AML.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"863-873"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241254403","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor disease. Chromosomal abnormality is an independent prognostic factor in AML. AML with t(8:21) (q22; q22)/AML1-ETO (AE) is an independent disease group. In this research, a new method based on Raman spectroscopy is reported for label-free single-cell identification and analysis of AE fusion genes in clinical AML patients. Raman spectroscopy reflects the intrinsic vibration information of molecules in a label-free and non-destructive manner, and the fingerprint Raman spectrum of cells characterizes intracellular molecular types and relative concentration information, so as to realize the identification and molecular metabolism analysis of different kinds of cells. We collected the Raman spectra of bone marrow cells from clinically diagnosed AML M2 patients with and without the AE fusion gene. Through comparison of the average spectra and identification analysis based on multivariate statistical methods such as principal component analysis and linear discriminant analysis, the distinction between AE positive and negative sample cells in M2 AML patients was successfully achieved, and the single-cell identification accuracy was more than 90%. At the same time, the Raman spectra of the two types of cells were analyzed by the multivariate curve resolution alternating least squares decomposition method. It was found that the presence of the AE fusion gene may lead to the metabolic changes of lipid and nucleic acid in AML cells, which was consistent with the results of genomic and metabolomic multi-omics studies. The above results indicate that single-cell Raman spectroscopy has the potential for early identification of AE-positive AML.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”