Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian
{"title":"Two-Stage Training Framework Using Multicontrast MRI Radiomics for <i>IDH</i> Mutation Status Prediction in Glioma.","authors":"Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian","doi":"10.1148/ryai.230218","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (<i>IDH</i>) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of <i>IDH</i> mutation status in patients with glioma. <b>Keywords:</b> Glioma, Isocitrate Dehydrogenase Mutation, <i>IDH</i> Mutation, Radiomics, MRI <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230218"},"PeriodicalIF":8.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (IDH) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of IDH mutation status in patients with glioma. Keywords: Glioma, Isocitrate Dehydrogenase Mutation, IDH Mutation, Radiomics, MRI Supplemental material is available for this article. Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.
期刊介绍:
Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.