Sukhvinder Pal Singh, Rakesh Sharma, Priyanka Suthar, Monika Thakur
{"title":"Emerging innovative pre- and post-harvest management practices to mitigate patulin-linked food safety risks in apple and its products","authors":"Sukhvinder Pal Singh, Rakesh Sharma, Priyanka Suthar, Monika Thakur","doi":"10.1111/jfs.13135","DOIUrl":null,"url":null,"abstract":"<p>Patulin, a toxic secondary metabolite produced by certain molds (<i>Penicillium</i>, <i>Aspergillus</i>, and <i>Byssochlamys</i>), poses a significant health risk when present in apple juice products above permissible levels. Its presence is a major concern for both consumers and regulatory bodies due to its potential carcinogenic and mutagenic effects. Minimizing patulin concentration in apple juice products requires a multifaceted approach involving various stages of apple fruit production, from orchard management to processing and storage. This review explores the pre- and postharvest strategies associated with minimizing patulin concentration in apple juice products. It examines the role of good agricultural practices in reducing mold contamination in orchards and discusses the importance of proper postharvest handling, including fruit sorting and washing to remove contaminated apples before processing. During processing, factors such as temperature, pH, and processing time play crucial roles in minimizing patulin levels. Innovative processing technologies, such as pulsed electric fields (PEF), ultraviolet (UV) radiation, high-pressure processing, enzymatic, and chemical degradation have shown promise in reducing patulin concentration while preserving the sensory and nutritional quality of the juice. Furthermore, effective storage practices, such as maintaining proper temperature and humidity levels, are essential for preventing patulin formation during storage. Continuous monitoring and analytical testing for patulin content throughout the production chain are necessary to ensure compliance with regulatory standards and to guarantee the safety of apple juice products. Despite advancements in technology and production practices, challenges remain in effectively minimizing patulin concentration. These include the need for further research to develop more efficient detection methods, the adoption of sustainable and eco-friendly practices in orchard management, and the dissemination of knowledge and best practices to stakeholders across the apple juice supply chain. In conclusion, minimizing patulin concentration in apple juice products requires a holistic approach that integrates preventive measures, innovative processing technologies, and stringent quality control measures. By addressing these challenges, the apple juice industry can ensure the production of safe and high-quality products that meet regulatory standards and consumer expectations.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13135","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patulin, a toxic secondary metabolite produced by certain molds (Penicillium, Aspergillus, and Byssochlamys), poses a significant health risk when present in apple juice products above permissible levels. Its presence is a major concern for both consumers and regulatory bodies due to its potential carcinogenic and mutagenic effects. Minimizing patulin concentration in apple juice products requires a multifaceted approach involving various stages of apple fruit production, from orchard management to processing and storage. This review explores the pre- and postharvest strategies associated with minimizing patulin concentration in apple juice products. It examines the role of good agricultural practices in reducing mold contamination in orchards and discusses the importance of proper postharvest handling, including fruit sorting and washing to remove contaminated apples before processing. During processing, factors such as temperature, pH, and processing time play crucial roles in minimizing patulin levels. Innovative processing technologies, such as pulsed electric fields (PEF), ultraviolet (UV) radiation, high-pressure processing, enzymatic, and chemical degradation have shown promise in reducing patulin concentration while preserving the sensory and nutritional quality of the juice. Furthermore, effective storage practices, such as maintaining proper temperature and humidity levels, are essential for preventing patulin formation during storage. Continuous monitoring and analytical testing for patulin content throughout the production chain are necessary to ensure compliance with regulatory standards and to guarantee the safety of apple juice products. Despite advancements in technology and production practices, challenges remain in effectively minimizing patulin concentration. These include the need for further research to develop more efficient detection methods, the adoption of sustainable and eco-friendly practices in orchard management, and the dissemination of knowledge and best practices to stakeholders across the apple juice supply chain. In conclusion, minimizing patulin concentration in apple juice products requires a holistic approach that integrates preventive measures, innovative processing technologies, and stringent quality control measures. By addressing these challenges, the apple juice industry can ensure the production of safe and high-quality products that meet regulatory standards and consumer expectations.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.