A Lehmer-type lower bound for the canonical height on elliptic curves over function fields

Pub Date : 2024-05-16 DOI:10.1016/j.jnt.2024.04.004
Joseph H. Silverman
{"title":"A Lehmer-type lower bound for the canonical height on elliptic curves over function fields","authors":"Joseph H. Silverman","doi":"10.1016/j.jnt.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be the function field of a curve over an algebraically closed field with <span><math><mi>char</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≠</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, and let <span><math><mi>E</mi><mo>/</mo><mi>F</mi></math></span> be a non-isotrivial elliptic curve. Then for all finite extensions <span><math><mi>K</mi><mo>/</mo><mi>F</mi></math></span> and all non-torsion points <span><math><mi>P</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the <span><math><mi>F</mi></math></span>-normalized canonical height of <em>P</em> is bounded below by<span><span><span><math><msub><mrow><mover><mrow><mi>h</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>P</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>10500</mn><mo>⋅</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mo>(</mo><msub><mrow><mi>j</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo>[</mo><mi>K</mi><mo>:</mo><mi>F</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>.</mo></math></span></span></span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be the function field of a curve over an algebraically closed field with char(F)2,3, and let E/F be a non-isotrivial elliptic curve. Then for all finite extensions K/F and all non-torsion points PE(K), the F-normalized canonical height of P is bounded below byhˆE(P)110500hF(jE)2[K:F]2.

分享
查看原文
函数域上椭圆曲线典型高度的雷默型下界
设 F 是代数闭域上的曲线的函数域,char(F)≠2,3,并设 E/F 是非等离椭圆曲线。那么,对于所有有限扩展 K/F 和所有非扭转点 P∈E(K),P 的 F 归一化正则高度在下面有界:hˆE(P)≥110500⋅hF(jE)2⋅[K:F]2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信