Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kari Astala , Martí Prats , Eero Saksman
{"title":"Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale","authors":"Kari Astala ,&nbsp;Martí Prats ,&nbsp;Eero Saksman","doi":"10.1016/j.matpur.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>We study quasiconformal mappings in planar domains Ω and their regularity properties described in terms of Sobolev, Bessel potential or Triebel-Lizorkin scales. This leads to optimal conditions, in terms of the geometry of the boundary ∂Ω and of the smoothness of the Beltrami coefficient, that guarantee the global regularity of the mappings in these classes. In the Triebel-Lizorkin class with smoothness below 1, the same conditions give global regularity in Ω for the principal solutions with Beltrami coefficient supported in Ω.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000412/pdfft?md5=f62675a2e198d50e0c28eb49218cd39b&pid=1-s2.0-S0021782424000412-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study quasiconformal mappings in planar domains Ω and their regularity properties described in terms of Sobolev, Bessel potential or Triebel-Lizorkin scales. This leads to optimal conditions, in terms of the geometry of the boundary ∂Ω and of the smoothness of the Beltrami coefficient, that guarantee the global regularity of the mappings in these classes. In the Triebel-Lizorkin class with smoothness below 1, the same conditions give global regularity in Ω for the principal solutions with Beltrami coefficient supported in Ω.

Triebel-Lizorkin尺度下准共形映射的全局平滑性
我们研究平面域 Ω 中的准共形映射及其用索博列夫、贝塞尔势或特里贝尔-利佐金尺度描述的正则特性。这就从边界∂Ω 的几何形状和贝特拉米系数的平滑性方面得出了最佳条件,从而保证了这些类别中映射的全局正则性。在光滑度低于 1 的 Triebel-Lizorkin 类中,同样的条件给出了在 Ω 中支持贝特拉米系数的主解的全局正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信