Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale

IF 2.1 1区 数学 Q1 MATHEMATICS
Kari Astala , Martí Prats , Eero Saksman
{"title":"Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale","authors":"Kari Astala ,&nbsp;Martí Prats ,&nbsp;Eero Saksman","doi":"10.1016/j.matpur.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>We study quasiconformal mappings in planar domains Ω and their regularity properties described in terms of Sobolev, Bessel potential or Triebel-Lizorkin scales. This leads to optimal conditions, in terms of the geometry of the boundary ∂Ω and of the smoothness of the Beltrami coefficient, that guarantee the global regularity of the mappings in these classes. In the Triebel-Lizorkin class with smoothness below 1, the same conditions give global regularity in Ω for the principal solutions with Beltrami coefficient supported in Ω.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"186 ","pages":"Pages 205-250"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782424000412/pdfft?md5=f62675a2e198d50e0c28eb49218cd39b&pid=1-s2.0-S0021782424000412-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000412","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study quasiconformal mappings in planar domains Ω and their regularity properties described in terms of Sobolev, Bessel potential or Triebel-Lizorkin scales. This leads to optimal conditions, in terms of the geometry of the boundary ∂Ω and of the smoothness of the Beltrami coefficient, that guarantee the global regularity of the mappings in these classes. In the Triebel-Lizorkin class with smoothness below 1, the same conditions give global regularity in Ω for the principal solutions with Beltrami coefficient supported in Ω.

Triebel-Lizorkin尺度下准共形映射的全局平滑性
我们研究平面域 Ω 中的准共形映射及其用索博列夫、贝塞尔势或特里贝尔-利佐金尺度描述的正则特性。这就从边界∂Ω 的几何形状和贝特拉米系数的平滑性方面得出了最佳条件,从而保证了这些类别中映射的全局正则性。在光滑度低于 1 的 Triebel-Lizorkin 类中,同样的条件给出了在 Ω 中支持贝特拉米系数的主解的全局正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信