Guangbin Gao , Dong Bai , Tianli Li , Jie Li , Yunlu Jia , Jing Li , Zhi Wang , Xiuyun Cao , Lirong Song
{"title":"Understanding filamentous cyanobacteria and their adaptive niches in Lake Honghu, a shallow eutrophic lake","authors":"Guangbin Gao , Dong Bai , Tianli Li , Jie Li , Yunlu Jia , Jing Li , Zhi Wang , Xiuyun Cao , Lirong Song","doi":"10.1016/j.jes.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>Freshwater lakes globally are witnessing an escalation in the frequency and intensity of cyanobacterial harmful blooms. However, underlying factors influencing the succession or coexistence of cyanobacteria, especially filamentous ones, remain poorly understood. Lake Honghu, a Ramsar Wetland of International Importance with degrading aquatic ecological quality, served as a case study to elucidate the intricate relationship between environmental changes and cyanobacterial dynamics. Our analysis revealed a significant increase in the dominance of filamentous cyanobacteria, marked by high spatiotemporal variability in community structure. This dominance of filamentous diazotrophic cyanobacteria is attributed to a decrease in the ratio of dissolved inorganic nitrogen to total phosphorus and their capacity to utilize organic phosphorus in phosphorus-deficient conditions. Species-specific density variations were linked to diverse environmental factors, with total nitrogen or total phosphorus concentration remaining as a crucial factor influencing dominant cyanobacterial density fluctuations. The dominance of low-temperature-tolerant <em>Aphanizomenon</em> and <em>Pseudanabaena</em> was evident in spring and winter, whereas <em>Dolichospermum</em> and <em>Cylindrospermopsis</em>, which prefer higher temperatures, thrived in summer and autumn. Additionally, non-algal turbidity and heterogeneity can potentially alter the competitive outcome among filamentous cyanobacteria or foster coexistence under conditions of elevated temperatures and nutrient limitation. This study predicts that filamentous cyanobacteria may spread and persist in lakes spanning a wide trophic range. Current findings enhance our comprehension of the dynamic responses exhibited by filamentous bloom-forming cyanobacteria in the face of environmental changes within shallow eutrophic lakes and provide valuable insights for lake managers involved in the remediation of degraded shallow lakes.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224002420","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater lakes globally are witnessing an escalation in the frequency and intensity of cyanobacterial harmful blooms. However, underlying factors influencing the succession or coexistence of cyanobacteria, especially filamentous ones, remain poorly understood. Lake Honghu, a Ramsar Wetland of International Importance with degrading aquatic ecological quality, served as a case study to elucidate the intricate relationship between environmental changes and cyanobacterial dynamics. Our analysis revealed a significant increase in the dominance of filamentous cyanobacteria, marked by high spatiotemporal variability in community structure. This dominance of filamentous diazotrophic cyanobacteria is attributed to a decrease in the ratio of dissolved inorganic nitrogen to total phosphorus and their capacity to utilize organic phosphorus in phosphorus-deficient conditions. Species-specific density variations were linked to diverse environmental factors, with total nitrogen or total phosphorus concentration remaining as a crucial factor influencing dominant cyanobacterial density fluctuations. The dominance of low-temperature-tolerant Aphanizomenon and Pseudanabaena was evident in spring and winter, whereas Dolichospermum and Cylindrospermopsis, which prefer higher temperatures, thrived in summer and autumn. Additionally, non-algal turbidity and heterogeneity can potentially alter the competitive outcome among filamentous cyanobacteria or foster coexistence under conditions of elevated temperatures and nutrient limitation. This study predicts that filamentous cyanobacteria may spread and persist in lakes spanning a wide trophic range. Current findings enhance our comprehension of the dynamic responses exhibited by filamentous bloom-forming cyanobacteria in the face of environmental changes within shallow eutrophic lakes and provide valuable insights for lake managers involved in the remediation of degraded shallow lakes.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.