Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa
{"title":"Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.","authors":"Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa","doi":"10.1080/0954898X.2024.2353665","DOIUrl":null,"url":null,"abstract":"<p><p>Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2353665","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.

基于分数社会优化的迁移和副本管理算法,用于云计算分布式文件系统的负载平衡。
在云计算等分布式文件系统(DFS)中,数据的有效管理是一个主要问题。这个问题可以通过有效复制文件来解决,这样可以最大限度地缩短数据访问时间,提高数据可用性。本文设计了一种分数社会优化算法(FSOA),用于复制管理和平衡云阶段 DFS 的负载。平衡 DFS 的工作负载是主要目标。在这里,通过深度模糊聚类(DFC)将文件划分为不同数量的块来创建块,然后以循环方式分配虚拟机(VM)。在这种情况下,为了平衡负载,需要考虑某些目标,如资源使用、能源消耗和迁移成本,从而使用所提出的 FSOA 进行负载平衡。在这里,FSOA 是通过联合社会优化算法(SOA)和分数微积分(FC)来实现的。考虑到各种目标,使用所提出的 FSOA 在 DFS 中进行副本管理。FSOA 的最小负载为 0.299,最小成本为 0.395,最小能耗为 0.510,最小开销为 0.358,最小吞吐量为 0.537。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信