Jinxiang Ye, Fangfang Zhang, Zhouyuan Luo, Xiaoyan Ou
{"title":"Comparative salivary proteomics analysis of children with and without early childhood caries using the DIA approach: A pilot study.","authors":"Jinxiang Ye, Fangfang Zhang, Zhouyuan Luo, Xiaoyan Ou","doi":"10.1002/prca.202400006","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To screen differentially expressed proteins (DEPs) in the saliva of Early childhood caries (ECC) with different degrees of severity.</p><p><strong>Methods: </strong>The proteomic profiles of salivary of children with ECC of varying severity by data independent acquisition data independent acquisition (DIA) technique. A total of 12 preschool children aged 3-5 years were included in this study.</p><p><strong>Results: </strong>In this study, a total of 15,083 peptides and 1944 proteins were quantified; The results of DEPs screening showed that 34 DEPs were identified between the group H and the group LC, including 18 up-regulated proteins and 16 down-regulated proteins; 34 DEPs were screened between the group H and the group HC, including 17 up-regulated proteins and 17 down-regulated proteins; 42 DEPs were screened between the group LC and the group HC, including 18 up-regulated proteins and 24 down-regulated proteins. Among these DEPs, we screened several key proteins that may play a role in ECC, such as MK, histone H4, TGFβ3, ZG16B, MUC20, and SMR-3B.</p><p><strong>Conclusion: </strong>Salivary proteins, as important host factors of caries, are differentially expressed between the saliva of ECC children and healthy children. Specific DEPs are expected to become potential biomarkers for the diagnosis of ECC.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e2400006"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202400006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To screen differentially expressed proteins (DEPs) in the saliva of Early childhood caries (ECC) with different degrees of severity.
Methods: The proteomic profiles of salivary of children with ECC of varying severity by data independent acquisition data independent acquisition (DIA) technique. A total of 12 preschool children aged 3-5 years were included in this study.
Results: In this study, a total of 15,083 peptides and 1944 proteins were quantified; The results of DEPs screening showed that 34 DEPs were identified between the group H and the group LC, including 18 up-regulated proteins and 16 down-regulated proteins; 34 DEPs were screened between the group H and the group HC, including 17 up-regulated proteins and 17 down-regulated proteins; 42 DEPs were screened between the group LC and the group HC, including 18 up-regulated proteins and 24 down-regulated proteins. Among these DEPs, we screened several key proteins that may play a role in ECC, such as MK, histone H4, TGFβ3, ZG16B, MUC20, and SMR-3B.
Conclusion: Salivary proteins, as important host factors of caries, are differentially expressed between the saliva of ECC children and healthy children. Specific DEPs are expected to become potential biomarkers for the diagnosis of ECC.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.