{"title":"Interpretable machine learning for evaluating risk factors of freeway crash severity.","authors":"Seyed Alireza Samerei, Kayvan Aghabayk","doi":"10.1080/17457300.2024.2351972","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) models are widely employed for crash severity modelling, yet their interpretability remains underexplored. Interpretation is crucial for comprehending ML results and aiding informed decision-making. This study aims to implement an interpretable ML to visualize the impacts of factors on crash severity using 5 years of freeways data from Iran. Methods including classification and regression trees (CART), K-nearest neighbours (KNNs), random forest (RF), artificial neural network (ANN) and support vector machines (SVM) were applied, with RF demonstrating superior accuracy, recall, F1-score and ROC. The accumulated local effects (ALE) were utilized for interpretation. Findings suggest that light traffic conditions (<math><mtext>volume</mtext><mo>/</mo><mtext>capacity</mtext><mo><</mo><mn>0.5</mn></math>) with critical values around 0.05 or 0.38, and higher proportion of large trucks and buses, particularly at 10% and 4%, are associated with severe crashes. Additionally, speeds exceeding 90 km/h, drivers younger than 30 years, rollover crashes, collisions with fixed objects and barriers, nighttime driving and driver fatigue elevate the likelihood of severe crashes.</p>","PeriodicalId":47014,"journal":{"name":"International Journal of Injury Control and Safety Promotion","volume":" ","pages":"534-550"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Injury Control and Safety Promotion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17457300.2024.2351972","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models are widely employed for crash severity modelling, yet their interpretability remains underexplored. Interpretation is crucial for comprehending ML results and aiding informed decision-making. This study aims to implement an interpretable ML to visualize the impacts of factors on crash severity using 5 years of freeways data from Iran. Methods including classification and regression trees (CART), K-nearest neighbours (KNNs), random forest (RF), artificial neural network (ANN) and support vector machines (SVM) were applied, with RF demonstrating superior accuracy, recall, F1-score and ROC. The accumulated local effects (ALE) were utilized for interpretation. Findings suggest that light traffic conditions () with critical values around 0.05 or 0.38, and higher proportion of large trucks and buses, particularly at 10% and 4%, are associated with severe crashes. Additionally, speeds exceeding 90 km/h, drivers younger than 30 years, rollover crashes, collisions with fixed objects and barriers, nighttime driving and driver fatigue elevate the likelihood of severe crashes.
期刊介绍:
International Journal of Injury Control and Safety Promotion (formerly Injury Control and Safety Promotion) publishes articles concerning all phases of injury control, including prevention, acute care and rehabilitation. Specifically, this journal will publish articles that for each type of injury: •describe the problem •analyse the causes and risk factors •discuss the design and evaluation of solutions •describe the implementation of effective programs and policies The journal encompasses all causes of fatal and non-fatal injury, including injuries related to: •transport •school and work •home and leisure activities •sport •violence and assault