{"title":"A Youthful Touch: Reversal of Aging Hallmarks by Cell Reprogramming.","authors":"Eleni Miliotou, Irene de Lázaro","doi":"10.1159/000539415","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity.</p><p><strong>Summary: </strong>Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions.</p><p><strong>Key messages: </strong>Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000539415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity.
Summary: Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions.
Key messages: Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.