Anne Van der Meeren, Karine Devilliers, Nina Griffiths, Anne-Sophie Chaplault, Martine Defrance, Gaëtan Ducouret, Michaël Pasteur, Pierre Laroche, François Caire-Maurisier
{"title":"Decontamination of Actinide-contaminated Injured Skin with Ca-DTPA Products Using an Ex Vivo Rat Skin Model.","authors":"Anne Van der Meeren, Karine Devilliers, Nina Griffiths, Anne-Sophie Chaplault, Martine Defrance, Gaëtan Ducouret, Michaël Pasteur, Pierre Laroche, François Caire-Maurisier","doi":"10.1097/HP.0000000000001827","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.