Anne Van der Meeren, Karine Devilliers, Nina Griffiths, Anne-Sophie Chaplault, Martine Defrance, Gaëtan Ducouret, Michaël Pasteur, Pierre Laroche, François Caire-Maurisier
{"title":"Decontamination of Actinide-contaminated Injured Skin with Ca-DTPA Products Using an Ex Vivo Rat Skin Model.","authors":"Anne Van der Meeren, Karine Devilliers, Nina Griffiths, Anne-Sophie Chaplault, Martine Defrance, Gaëtan Ducouret, Michaël Pasteur, Pierre Laroche, François Caire-Maurisier","doi":"10.1097/HP.0000000000001827","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"490-503"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001827","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA). The goal of the present work is to assess the efficacy of a novel Ca-DTPA loaded gel to decontaminate injured skin exposed to plutonium or americium as compared to recommended treatments. For decontaminant testing on injured skin, whole body skin was obtained from euthanized rats and lesions created using a metallic brush. Delimited test areas were contaminated with plutonium or americium solutions of known properties. Various protocols were tested including time before contamination, duration of gel application, washing steps, as well as the concomitant addition or not of dressings. Activity was measured in each decontamination product and in skin. Data indicate that healthy skin was easier to decontaminate than damaged skin. On injured skin, we demonstrated an increased decontamination efficacy of the Ca-DTPA gel formulation as compared to the solution. Importantly, gel application alone was effective, and further gel applications could be used for residual activity.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.