Error analysis of a collocation method on graded meshes for a fractional Laplacian problem

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Minghua Chen, Weihua Deng, Chao Min, Jiankang Shi, Martin Stynes
{"title":"Error analysis of a collocation method on graded meshes for a fractional Laplacian problem","authors":"Minghua Chen, Weihua Deng, Chao Min, Jiankang Shi, Martin Stynes","doi":"10.1007/s10444-024-10146-3","DOIUrl":null,"url":null,"abstract":"<p>The numerical solution of a 1D fractional Laplacian boundary value problem is studied. Although the fractional Laplacian is one of the most important and prominent nonlocal operators, its numerical analysis is challenging, partly because the problem’s solution has in general a weak singularity at the boundary of the domain. To solve the problem numerically, we use piecewise linear collocation on a mesh that is graded to handle the boundary singularity. A rigorous analysis yields a bound on the maximum nodal error which shows how the order of convergence of the method depends on the grading of the mesh; hence, one can determine the optimal mesh grading. Numerical results are presented that confirm the sharpness of the error analysis.</p>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10444-024-10146-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical solution of a 1D fractional Laplacian boundary value problem is studied. Although the fractional Laplacian is one of the most important and prominent nonlocal operators, its numerical analysis is challenging, partly because the problem’s solution has in general a weak singularity at the boundary of the domain. To solve the problem numerically, we use piecewise linear collocation on a mesh that is graded to handle the boundary singularity. A rigorous analysis yields a bound on the maximum nodal error which shows how the order of convergence of the method depends on the grading of the mesh; hence, one can determine the optimal mesh grading. Numerical results are presented that confirm the sharpness of the error analysis.

针对分数拉普拉斯问题的梯度网格上的拼合方法的误差分析
本文研究了一维分数拉普拉斯边界值问题的数值求解。虽然分数拉普拉斯算子是最重要和最突出的非局部算子之一,但其数值分析却具有挑战性,部分原因是该问题的解一般在域边界处具有弱奇异性。为了对该问题进行数值求解,我们在网格上使用了分段线性配位来处理边界奇点。通过严格的分析,我们得出了最大节点误差的界限,这表明该方法的收敛阶数如何取决于网格的分级;因此,我们可以确定最佳的网格分级。给出的数值结果证实了误差分析的精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信