Numerical solutions of optimal stopping problems for a class of hybrid stochastic systems

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Philip A. Ernst , Xiaohang Ma , Masoud H. Nazari , Hongjiang Qian , Le Yi Wang , George Yin
{"title":"Numerical solutions of optimal stopping problems for a class of hybrid stochastic systems","authors":"Philip A. Ernst ,&nbsp;Xiaohang Ma ,&nbsp;Masoud H. Nazari ,&nbsp;Hongjiang Qian ,&nbsp;Le Yi Wang ,&nbsp;George Yin","doi":"10.1016/j.nahs.2024.101507","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to numerically solving a class of optimal stopping problems for stochastic hybrid systems involving both continuous states and discrete events. The motivation for solving this class of problems stems from quickest event detection problems of stochastic hybrid systems in broad application domains. We solve the optimal stopping problems numerically by constructing feasible algorithms using Markov chain approximation techniques. The key tasks we undertake include designing and constructing discrete-time Markov chains that are locally consistent with switching diffusions, proving the convergence of suitably scaled sequences, and obtaining convergence for the cost and value functions. Finally, numerical results are provided to demonstrate the performance of the algorithms.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"53 ","pages":"Article 101507"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X2400044X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to numerically solving a class of optimal stopping problems for stochastic hybrid systems involving both continuous states and discrete events. The motivation for solving this class of problems stems from quickest event detection problems of stochastic hybrid systems in broad application domains. We solve the optimal stopping problems numerically by constructing feasible algorithms using Markov chain approximation techniques. The key tasks we undertake include designing and constructing discrete-time Markov chains that are locally consistent with switching diffusions, proving the convergence of suitably scaled sequences, and obtaining convergence for the cost and value functions. Finally, numerical results are provided to demonstrate the performance of the algorithms.

一类混合随机系统的最优停止问题的数值解决方案
本文致力于数值求解一类同时涉及连续状态和离散事件的随机混合系统的最优停止问题。解决这类问题的动机来自于广泛应用领域中随机混合系统的最快事件检测问题。我们利用马尔可夫链近似技术构建可行的算法,以数值方法解决最优停止问题。我们的主要任务包括设计和构建与切换扩散局部一致的离散时间马尔可夫链,证明适当比例序列的收敛性,以及获得成本和价值函数的收敛性。最后,我们将提供数值结果来证明算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信