Distinct distances in R3 between quadratic and orthogonal curves

IF 1 3区 数学 Q1 MATHEMATICS
Toby Aldape , Jingyi Liu , Gregory Pylypovych , Adam Sheffer , Minh-Quan Vo
{"title":"Distinct distances in R3 between quadratic and orthogonal curves","authors":"Toby Aldape ,&nbsp;Jingyi Liu ,&nbsp;Gregory Pylypovych ,&nbsp;Adam Sheffer ,&nbsp;Minh-Quan Vo","doi":"10.1016/j.ejc.2024.103993","DOIUrl":null,"url":null,"abstract":"<div><p>We study the minimum number of distinct distances between point sets on two curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Assume that one curve contains <span><math><mi>m</mi></math></span> points and the other <span><math><mi>n</mi></math></span> points. Our main results:</p><p>(a) When the curves are conic sections, we characterize all cases where the number of distances is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. This includes new constructions for points on two parabolas, two ellipses, and one ellipse and one hyperbola. In all other cases, the number of distances is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>,</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</p><p>(b) When the curves are not necessarily algebraic but smooth and contained in perpendicular planes, we characterize all cases where the number of distances is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. This includes a surprising new construction of non-algebraic curves that involve logarithms. In all other cases, the number of distances is <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>,</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"120 ","pages":"Article 103993"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000787","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the minimum number of distinct distances between point sets on two curves in R3. Assume that one curve contains m points and the other n points. Our main results:

(a) When the curves are conic sections, we characterize all cases where the number of distances is O(m+n). This includes new constructions for points on two parabolas, two ellipses, and one ellipse and one hyperbola. In all other cases, the number of distances is Ω(min{m2/3n2/3,m2,n2}).

(b) When the curves are not necessarily algebraic but smooth and contained in perpendicular planes, we characterize all cases where the number of distances is O(m+n). This includes a surprising new construction of non-algebraic curves that involve logarithms. In all other cases, the number of distances is Ω(min{m2/3n2/3,m2,n2}).

二次曲线和正交曲线在 R3 中的不同距离
我们研究 R3 中两条曲线上的点集之间的最小不同距离数。假设一条曲线包含 m 个点,另一条曲线包含 n 个点。我们的主要结果是:(a) 当曲线是圆锥截面时,我们描述了所有距离数为 O(m+n) 的情况。这包括两个抛物线、两个椭圆、一个椭圆和一个双曲线上点的新构造。(b) 当曲线不一定是代数曲线,而是光滑且包含在垂直平面内时,我们描述了距离数为 O(m+n) 的所有情况。这包括一个令人惊讶的涉及对数的非代数曲线的新构造。在所有其他情况下,距离数都是Ω(min{m2/3n2/3,m2,n2})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信