Propagation of dark solitons of DNLS equations along a large-scale background

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
A.M. Kamchatnov, D.V. Shaykin
{"title":"Propagation of dark solitons of DNLS equations along a large-scale background","authors":"A.M. Kamchatnov,&nbsp;D.V. Shaykin","doi":"10.1016/j.wavemoti.2024.103349","DOIUrl":null,"url":null,"abstract":"<div><p>We study dynamics of dark solitons in the theory of the derivative nonlinear Schrödinger equations by the method based on imposing the condition that this dynamics must be Hamiltonian. Combining this condition with Stokes’ remark that relationships for harmonic linear waves and small-amplitude soliton tails satisfy the same linearized equations, so the corresponding solutions can be converted one into the other by replacement of the packet’s wave number <span><math><mi>k</mi></math></span> by <span><math><mrow><mi>i</mi><mi>κ</mi></mrow></math></span>, <span><math><mi>κ</mi></math></span> being the soliton’s inverse half-width, we find the Hamiltonian and the canonical momentum of the soliton’s motion. The Hamilton equations are reduced to the Newton equation whose solutions for some typical situations are compared with exact numerical solutions of the Kaup-Newell DNLS equation.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"129 ","pages":"Article 103349"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000799","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study dynamics of dark solitons in the theory of the derivative nonlinear Schrödinger equations by the method based on imposing the condition that this dynamics must be Hamiltonian. Combining this condition with Stokes’ remark that relationships for harmonic linear waves and small-amplitude soliton tails satisfy the same linearized equations, so the corresponding solutions can be converted one into the other by replacement of the packet’s wave number k by iκ, κ being the soliton’s inverse half-width, we find the Hamiltonian and the canonical momentum of the soliton’s motion. The Hamilton equations are reduced to the Newton equation whose solutions for some typical situations are compared with exact numerical solutions of the Kaup-Newell DNLS equation.

DNLS 方程的暗孤子沿大尺度背景传播
我们在导数非线性薛定谔方程理论中研究了暗孤子的动力学,其方法基于施加这种动力学必须是哈密尔顿式的条件。结合斯托克斯关于谐波线性波和小振幅孤子尾的关系满足相同的线性化方程的论述,因此通过用 iκ 替换数据包的波数 k(κ 是孤子的反半宽),可以将相应的解转换成另一种解,我们找到了孤子运动的哈密顿方程和规范动量。汉密尔顿方程被简化为牛顿方程,其在某些典型情况下的解与考普-纽厄尔 DNLS 方程的精确数值解进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信