Zihan Shu , Hailan Yang , Shujing Ye , Hong Li , Zhiming Yang , Chuang Li , Xiaofei Tan , Shaobo Liu , Hou Wang
{"title":"Iron scrap derived nano zero-valent iron/biochar activated persulfate for p-arsanilic acid decontamination with coexisting microplastics","authors":"Zihan Shu , Hailan Yang , Shujing Ye , Hong Li , Zhiming Yang , Chuang Li , Xiaofei Tan , Shaobo Liu , Hou Wang","doi":"10.1016/j.jes.2024.04.031","DOIUrl":null,"url":null,"abstract":"<div><p>P-arsanilic acid (AA) has received widespread attention because of its conversion to more toxic inorganic arsenic compounds (arsenate and arsenite) in the natural ecosystems. Its removal process and mechanisms with co-existence of microplastics remain unkown. In this study, biochar loaded with nano zero-valent iron (nZVI) particles (ISBC) was prepared by using iron scrap obtained from a steel works and wood chips collected from a wood processing plant. The advanced oxidation system of sodium persulfate (PDS) activated by ISBC was applied for AA degradation and inorganic arsenic control in aqueous media. More than 99% of the AA was completely degraded by the ISBC/PDS system, and the As(III) on AA was almost completely oxidized to As(V) and finally removed by ISBC. HCO<sub>3</sub><sup>−</sup> inhibited the removal of AA by the ISBC/PDS system, while Cl<sup>−</sup> had a dual effect that showing inhibition at low concentrations yet promotion at high concentrations. The effect of microplastics on the degradation of AA by the ISBC/PDS system was further investigated due to the potential for combined microplastic and organic arsenic contamination in rural/remote areas. Microplastics were found to have little effect on AA degradation in the ISBC/PDS system, while affect the transport of inorganic arsenic generated from AA degradation. Overall, this study provides new insights and methods for efficient removal of p-arsanilic acid from water with coexisting microplastics.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224002109","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
P-arsanilic acid (AA) has received widespread attention because of its conversion to more toxic inorganic arsenic compounds (arsenate and arsenite) in the natural ecosystems. Its removal process and mechanisms with co-existence of microplastics remain unkown. In this study, biochar loaded with nano zero-valent iron (nZVI) particles (ISBC) was prepared by using iron scrap obtained from a steel works and wood chips collected from a wood processing plant. The advanced oxidation system of sodium persulfate (PDS) activated by ISBC was applied for AA degradation and inorganic arsenic control in aqueous media. More than 99% of the AA was completely degraded by the ISBC/PDS system, and the As(III) on AA was almost completely oxidized to As(V) and finally removed by ISBC. HCO3− inhibited the removal of AA by the ISBC/PDS system, while Cl− had a dual effect that showing inhibition at low concentrations yet promotion at high concentrations. The effect of microplastics on the degradation of AA by the ISBC/PDS system was further investigated due to the potential for combined microplastic and organic arsenic contamination in rural/remote areas. Microplastics were found to have little effect on AA degradation in the ISBC/PDS system, while affect the transport of inorganic arsenic generated from AA degradation. Overall, this study provides new insights and methods for efficient removal of p-arsanilic acid from water with coexisting microplastics.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.