Review: Perovskite nanostructures materials versatile platform for advance biosensor applications

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vivek B. Korde , Suhas Khot , Dinkar B. Kamble , Shankar Amalraj
{"title":"Review: Perovskite nanostructures materials versatile platform for advance biosensor applications","authors":"Vivek B. Korde ,&nbsp;Suhas Khot ,&nbsp;Dinkar B. Kamble ,&nbsp;Shankar Amalraj","doi":"10.1016/j.snr.2024.100201","DOIUrl":null,"url":null,"abstract":"<div><p>The distinct presence of a central atom surrounded by eight ligands leads to higher light absorption and charge carrier mobility in perovskite materials. The peculiar nature of the structure inspires all the scientists and researchers to work more in sustainable applications, such as solar cells, light emitting diodes, transistor and biosensors. The capability of perovskite material in detecting smaller molecules such as O<sub>2</sub>, NO<sub>2</sub> and CO<sub>2</sub> is higher. Therefore, several biosensors are demonstrated based on the perovskite nanomaterial to various chemical and biological species with both solid and solution states. The immense sources of research articles thrived the author, to review the perovskite nanomaterials in the dimension of biosensor application extensively. This review covers major three areas of perovskite nanomaterial, such as components and characteristics of biosensors, properties and preparation of perovskite materials and application and research trends of perovskite nanostructure biosensor.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100201"},"PeriodicalIF":6.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000171/pdfft?md5=2c0c5fbdf52e1a12e7eecbbc9327d3bc&pid=1-s2.0-S2666053924000171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The distinct presence of a central atom surrounded by eight ligands leads to higher light absorption and charge carrier mobility in perovskite materials. The peculiar nature of the structure inspires all the scientists and researchers to work more in sustainable applications, such as solar cells, light emitting diodes, transistor and biosensors. The capability of perovskite material in detecting smaller molecules such as O2, NO2 and CO2 is higher. Therefore, several biosensors are demonstrated based on the perovskite nanomaterial to various chemical and biological species with both solid and solution states. The immense sources of research articles thrived the author, to review the perovskite nanomaterials in the dimension of biosensor application extensively. This review covers major three areas of perovskite nanomaterial, such as components and characteristics of biosensors, properties and preparation of perovskite materials and application and research trends of perovskite nanostructure biosensor.

Abstract Image

回顾:用于先进生物传感器应用的透镜纳米结构材料多功能平台
一个中心原子被八个配体包围,这种独特的结构使包晶石材料具有更高的光吸收率和电荷载流子迁移率。这种结构的特殊性激发了所有科学家和研究人员在太阳能电池、发光二极管、晶体管和生物传感器等可持续应用领域开展更多工作。透镜材料检测较小分子(如氧气、二氧化氮和二氧化碳)的能力较强。因此,基于透镜纳米材料的多种生物传感器在固态和溶液态下都能检测各种化学和生物物种。大量的研究文章促使作者对透镜纳米材料在生物传感器领域的应用进行了广泛的综述。这篇综述涵盖了光致抗蚀剂纳米材料的三个主要领域,如生物传感器的成分和特征、光致抗蚀剂材料的性质和制备以及光致抗蚀剂纳米结构生物传感器的应用和研究趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信