Muhammad Bilal Azmi, Muhammad Yahya Noori, Syed Danish Haseen Ahmed, Bader Saud Alotaibi, Sadaf Naeem, Mohsin Kazi, Muhammad Islam, Abdul Wadood
{"title":"Exploring Zingiber officinale bioactive compounds for inhibitory effects on Streptococcus pneumoniae capsular polysaccharide biosynthesis proteins: In silico study.","authors":"Muhammad Bilal Azmi, Muhammad Yahya Noori, Syed Danish Haseen Ahmed, Bader Saud Alotaibi, Sadaf Naeem, Mohsin Kazi, Muhammad Islam, Abdul Wadood","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.</p>","PeriodicalId":19971,"journal":{"name":"Pakistan journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.
期刊介绍:
Pakistan Journal of Pharmaceutical Sciences (PJPS) is a peer reviewed multi-disciplinary pharmaceutical sciences journal. The PJPS had its origin in 1988 from the Faculty of Pharmacy, University of Karachi as a biannual journal, frequency converted as quarterly in 2005, and now PJPS is being published as bi-monthly from January 2013.
PJPS covers Biological, Pharmaceutical and Medicinal Research (Drug Delivery, Pharmacy Management, Molecular Biology, Biochemical, Pharmacology, Pharmacokinetics, Phytochemical, Bio-analytical, Therapeutics, Biotechnology and research on nano particles.